| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isocnv2 | Unicode version | ||
| Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.) |
| Ref | Expression |
|---|---|
| isocnv2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isof1o 5899 |
. . 3
| |
| 2 | f1ofn 5545 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | isof1o 5899 |
. . 3
| |
| 5 | 4, 2 | syl 14 |
. 2
|
| 6 | ralcom 2671 |
. . . . 5
| |
| 7 | vex 2779 |
. . . . . . . . . 10
| |
| 8 | vex 2779 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | brcnv 4879 |
. . . . . . . . 9
|
| 10 | 9 | a1i 9 |
. . . . . . . 8
|
| 11 | funfvex 5616 |
. . . . . . . . . . 11
| |
| 12 | 11 | funfni 5395 |
. . . . . . . . . 10
|
| 13 | 12 | adantr 276 |
. . . . . . . . 9
|
| 14 | funfvex 5616 |
. . . . . . . . . . 11
| |
| 15 | 14 | funfni 5395 |
. . . . . . . . . 10
|
| 16 | 15 | adantlr 477 |
. . . . . . . . 9
|
| 17 | brcnvg 4877 |
. . . . . . . . 9
| |
| 18 | 13, 16, 17 | syl2anc 411 |
. . . . . . . 8
|
| 19 | 10, 18 | bibi12d 235 |
. . . . . . 7
|
| 20 | 19 | ralbidva 2504 |
. . . . . 6
|
| 21 | 20 | ralbidva 2504 |
. . . . 5
|
| 22 | 6, 21 | bitr4id 199 |
. . . 4
|
| 23 | 22 | anbi2d 464 |
. . 3
|
| 24 | df-isom 5299 |
. . 3
| |
| 25 | df-isom 5299 |
. . 3
| |
| 26 | 23, 24, 25 | 3bitr4g 223 |
. 2
|
| 27 | 3, 5, 26 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-f1o 5297 df-fv 5298 df-isom 5299 |
| This theorem is referenced by: infisoti 7160 |
| Copyright terms: Public domain | W3C validator |