Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isocnv2 | Unicode version |
Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.) |
Ref | Expression |
---|---|
isocnv2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isof1o 5775 | . . 3 | |
2 | f1ofn 5433 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | isof1o 5775 | . . 3 | |
5 | 4, 2 | syl 14 | . 2 |
6 | ralcom 2629 | . . . . 5 | |
7 | vex 2729 | . . . . . . . . . 10 | |
8 | vex 2729 | . . . . . . . . . 10 | |
9 | 7, 8 | brcnv 4787 | . . . . . . . . 9 |
10 | 9 | a1i 9 | . . . . . . . 8 |
11 | funfvex 5503 | . . . . . . . . . . 11 | |
12 | 11 | funfni 5288 | . . . . . . . . . 10 |
13 | 12 | adantr 274 | . . . . . . . . 9 |
14 | funfvex 5503 | . . . . . . . . . . 11 | |
15 | 14 | funfni 5288 | . . . . . . . . . 10 |
16 | 15 | adantlr 469 | . . . . . . . . 9 |
17 | brcnvg 4785 | . . . . . . . . 9 | |
18 | 13, 16, 17 | syl2anc 409 | . . . . . . . 8 |
19 | 10, 18 | bibi12d 234 | . . . . . . 7 |
20 | 19 | ralbidva 2462 | . . . . . 6 |
21 | 20 | ralbidva 2462 | . . . . 5 |
22 | 6, 21 | bitr4id 198 | . . . 4 |
23 | 22 | anbi2d 460 | . . 3 |
24 | df-isom 5197 | . . 3 | |
25 | df-isom 5197 | . . 3 | |
26 | 23, 24, 25 | 3bitr4g 222 | . 2 |
27 | 3, 5, 26 | pm5.21nii 694 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wcel 2136 wral 2444 cvv 2726 class class class wbr 3982 ccnv 4603 wfn 5183 wf1o 5187 cfv 5188 wiso 5189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-f1o 5195 df-fv 5196 df-isom 5197 |
This theorem is referenced by: infisoti 6997 |
Copyright terms: Public domain | W3C validator |