ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isocnv2 Unicode version

Theorem isocnv2 5880
Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
isocnv2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  `' R ,  `' S ( A ,  B ) )

Proof of Theorem isocnv2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5875 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
2 f1ofn 5522 . . 3  |-  ( H : A -1-1-onto-> B  ->  H  Fn  A )
31, 2syl 14 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H  Fn  A
)
4 isof1o 5875 . . 3  |-  ( H 
Isom  `' R ,  `' S
( A ,  B
)  ->  H : A
-1-1-onto-> B )
54, 2syl 14 . 2  |-  ( H 
Isom  `' R ,  `' S
( A ,  B
)  ->  H  Fn  A )
6 ralcom 2668 . . . . 5  |-  ( A. y  e.  A  A. x  e.  A  (
y R x  <->  ( H `  y ) S ( H `  x ) )  <->  A. x  e.  A  A. y  e.  A  ( y R x  <-> 
( H `  y
) S ( H `
 x ) ) )
7 vex 2774 . . . . . . . . . 10  |-  x  e. 
_V
8 vex 2774 . . . . . . . . . 10  |-  y  e. 
_V
97, 8brcnv 4860 . . . . . . . . 9  |-  ( x `' R y  <->  y R x )
109a1i 9 . . . . . . . 8  |-  ( ( ( H  Fn  A  /\  x  e.  A
)  /\  y  e.  A )  ->  (
x `' R y  <-> 
y R x ) )
11 funfvex 5592 . . . . . . . . . . 11  |-  ( ( Fun  H  /\  x  e.  dom  H )  -> 
( H `  x
)  e.  _V )
1211funfni 5375 . . . . . . . . . 10  |-  ( ( H  Fn  A  /\  x  e.  A )  ->  ( H `  x
)  e.  _V )
1312adantr 276 . . . . . . . . 9  |-  ( ( ( H  Fn  A  /\  x  e.  A
)  /\  y  e.  A )  ->  ( H `  x )  e.  _V )
14 funfvex 5592 . . . . . . . . . . 11  |-  ( ( Fun  H  /\  y  e.  dom  H )  -> 
( H `  y
)  e.  _V )
1514funfni 5375 . . . . . . . . . 10  |-  ( ( H  Fn  A  /\  y  e.  A )  ->  ( H `  y
)  e.  _V )
1615adantlr 477 . . . . . . . . 9  |-  ( ( ( H  Fn  A  /\  x  e.  A
)  /\  y  e.  A )  ->  ( H `  y )  e.  _V )
17 brcnvg 4858 . . . . . . . . 9  |-  ( ( ( H `  x
)  e.  _V  /\  ( H `  y )  e.  _V )  -> 
( ( H `  x ) `' S
( H `  y
)  <->  ( H `  y ) S ( H `  x ) ) )
1813, 16, 17syl2anc 411 . . . . . . . 8  |-  ( ( ( H  Fn  A  /\  x  e.  A
)  /\  y  e.  A )  ->  (
( H `  x
) `' S ( H `  y )  <-> 
( H `  y
) S ( H `
 x ) ) )
1910, 18bibi12d 235 . . . . . . 7  |-  ( ( ( H  Fn  A  /\  x  e.  A
)  /\  y  e.  A )  ->  (
( x `' R
y  <->  ( H `  x ) `' S
( H `  y
) )  <->  ( y R x  <->  ( H `  y ) S ( H `  x ) ) ) )
2019ralbidva 2501 . . . . . 6  |-  ( ( H  Fn  A  /\  x  e.  A )  ->  ( A. y  e.  A  ( x `' R y  <->  ( H `  x ) `' S
( H `  y
) )  <->  A. y  e.  A  ( y R x  <->  ( H `  y ) S ( H `  x ) ) ) )
2120ralbidva 2501 . . . . 5  |-  ( H  Fn  A  ->  ( A. x  e.  A  A. y  e.  A  ( x `' R
y  <->  ( H `  x ) `' S
( H `  y
) )  <->  A. x  e.  A  A. y  e.  A  ( y R x  <->  ( H `  y ) S ( H `  x ) ) ) )
226, 21bitr4id 199 . . . 4  |-  ( H  Fn  A  ->  ( A. y  e.  A  A. x  e.  A  ( y R x  <-> 
( H `  y
) S ( H `
 x ) )  <->  A. x  e.  A  A. y  e.  A  ( x `' R
y  <->  ( H `  x ) `' S
( H `  y
) ) ) )
2322anbi2d 464 . . 3  |-  ( H  Fn  A  ->  (
( H : A -1-1-onto-> B  /\  A. y  e.  A  A. x  e.  A  ( y R x  <-> 
( H `  y
) S ( H `
 x ) ) )  <->  ( H : A
-1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x `' R y  <->  ( H `  x ) `' S
( H `  y
) ) ) ) )
24 df-isom 5279 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. y  e.  A  A. x  e.  A  ( y R x  <-> 
( H `  y
) S ( H `
 x ) ) ) )
25 df-isom 5279 . . 3  |-  ( H 
Isom  `' R ,  `' S
( A ,  B
)  <->  ( H : A
-1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x `' R y  <->  ( H `  x ) `' S
( H `  y
) ) ) )
2623, 24, 253bitr4g 223 . 2  |-  ( H  Fn  A  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  `' R ,  `' S ( A ,  B ) ) )
273, 5, 26pm5.21nii 705 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  `' R ,  `' S ( A ,  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2175   A.wral 2483   _Vcvv 2771   class class class wbr 4043   `'ccnv 4673    Fn wfn 5265   -1-1-onto->wf1o 5269   ` cfv 5270    Isom wiso 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-f1o 5277  df-fv 5278  df-isom 5279
This theorem is referenced by:  infisoti  7133
  Copyright terms: Public domain W3C validator