ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzisod Unicode version

Theorem frec2uzisod 10629
Description:  G (see frec2uz0d 10621) is an isomorphism from natural ordinals to upper integers. (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frec2uzisod  |-  ( ph  ->  G  Isom  _E  ,  <  ( om ,  ( ZZ>= `  C ) ) )
Distinct variable groups:    x, C    ph, x
Allowed substitution hint:    G( x)

Proof of Theorem frec2uzisod
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . . 3  |-  ( ph  ->  C  e.  ZZ )
2 frec2uz.2 . . 3  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
31, 2frec2uzf1od 10628 . 2  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
4 epel 4383 . . . 4  |-  ( y  _E  z  <->  y  e.  z )
51adantr 276 . . . . 5  |-  ( (
ph  /\  ( y  e.  om  /\  z  e. 
om ) )  ->  C  e.  ZZ )
6 simprl 529 . . . . 5  |-  ( (
ph  /\  ( y  e.  om  /\  z  e. 
om ) )  -> 
y  e.  om )
7 simprr 531 . . . . 5  |-  ( (
ph  /\  ( y  e.  om  /\  z  e. 
om ) )  -> 
z  e.  om )
85, 2, 6, 7frec2uzlt2d 10626 . . . 4  |-  ( (
ph  /\  ( y  e.  om  /\  z  e. 
om ) )  -> 
( y  e.  z  <-> 
( G `  y
)  <  ( G `  z ) ) )
94, 8bitrid 192 . . 3  |-  ( (
ph  /\  ( y  e.  om  /\  z  e. 
om ) )  -> 
( y  _E  z  <->  ( G `  y )  <  ( G `  z ) ) )
109ralrimivva 2612 . 2  |-  ( ph  ->  A. y  e.  om  A. z  e.  om  (
y  _E  z  <->  ( G `  y )  <  ( G `  z )
) )
11 df-isom 5327 . 2  |-  ( G 
Isom  _E  ,  <  ( om ,  ( ZZ>= `  C ) )  <->  ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  A. y  e.  om  A. z  e.  om  (
y  _E  z  <->  ( G `  y )  <  ( G `  z )
) ) )
123, 10, 11sylanbrc 417 1  |-  ( ph  ->  G  Isom  _E  ,  <  ( om ,  ( ZZ>= `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   class class class wbr 4083    |-> cmpt 4145    _E cep 4378   omcom 4682   -1-1-onto->wf1o 5317   ` cfv 5318    Isom wiso 5319  (class class class)co 6001  freccfrec 6536   1c1 8000    + caddc 8002    < clt 8181   ZZcz 9446   ZZ>=cuz 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator