ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isof1o Unicode version

Theorem isof1o 5851
Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isof1o  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)

Proof of Theorem isof1o
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isom 5264 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
21simplbi 274 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wral 2472   class class class wbr 4030   -1-1-onto->wf1o 5254   ` cfv 5255    Isom wiso 5256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-isom 5264
This theorem is referenced by:  isocnv2  5856  isores1  5858  isoini  5862  isoini2  5863  isoselem  5864  isose  5865  isopolem  5866  isosolem  5868  smoiso  6357  isotilem  7067  supisolem  7069  supisoex  7070  supisoti  7071  ordiso2  7096  leisorel  10911  zfz1isolemiso  10913  seq3coll  10916  summodclem2a  11527  prodmodclem2a  11722
  Copyright terms: Public domain W3C validator