ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isof1o Unicode version

Theorem isof1o 5808
Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isof1o  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)

Proof of Theorem isof1o
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isom 5226 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
21simplbi 274 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wral 2455   class class class wbr 4004   -1-1-onto->wf1o 5216   ` cfv 5217    Isom wiso 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-isom 5226
This theorem is referenced by:  isocnv2  5813  isores1  5815  isoini  5819  isoini2  5820  isoselem  5821  isose  5822  isopolem  5823  isosolem  5825  smoiso  6303  isotilem  7005  supisolem  7007  supisoex  7008  supisoti  7009  ordiso2  7034  leisorel  10817  zfz1isolemiso  10819  seq3coll  10822  summodclem2a  11389  prodmodclem2a  11584
  Copyright terms: Public domain W3C validator