ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isof1o Unicode version

Theorem isof1o 5807
Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isof1o  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)

Proof of Theorem isof1o
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isom 5225 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
21simplbi 274 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wral 2455   class class class wbr 4003   -1-1-onto->wf1o 5215   ` cfv 5216    Isom wiso 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-isom 5225
This theorem is referenced by:  isocnv2  5812  isores1  5814  isoini  5818  isoini2  5819  isoselem  5820  isose  5821  isopolem  5822  isosolem  5824  smoiso  6302  isotilem  7004  supisolem  7006  supisoex  7007  supisoti  7008  ordiso2  7033  leisorel  10816  zfz1isolemiso  10818  seq3coll  10821  summodclem2a  11388  prodmodclem2a  11583
  Copyright terms: Public domain W3C validator