ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isof1o Unicode version

Theorem isof1o 5829
Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isof1o  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)

Proof of Theorem isof1o
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isom 5244 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
21simplbi 274 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wral 2468   class class class wbr 4018   -1-1-onto->wf1o 5234   ` cfv 5235    Isom wiso 5236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-isom 5244
This theorem is referenced by:  isocnv2  5834  isores1  5836  isoini  5840  isoini2  5841  isoselem  5842  isose  5843  isopolem  5844  isosolem  5846  smoiso  6328  isotilem  7036  supisolem  7038  supisoex  7039  supisoti  7040  ordiso2  7065  leisorel  10852  zfz1isolemiso  10854  seq3coll  10857  summodclem2a  11424  prodmodclem2a  11619
  Copyright terms: Public domain W3C validator