Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isoeq1 | Unicode version |
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
Ref | Expression |
---|---|
isoeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq1 5400 | . . 3 | |
2 | fveq1 5464 | . . . . . 6 | |
3 | fveq1 5464 | . . . . . 6 | |
4 | 2, 3 | breq12d 3978 | . . . . 5 |
5 | 4 | bibi2d 231 | . . . 4 |
6 | 5 | 2ralbidv 2481 | . . 3 |
7 | 1, 6 | anbi12d 465 | . 2 |
8 | df-isom 5176 | . 2 | |
9 | df-isom 5176 | . 2 | |
10 | 7, 8, 9 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wral 2435 class class class wbr 3965 wf1o 5166 cfv 5167 wiso 5168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-isom 5176 |
This theorem is referenced by: isores1 5759 ordiso 6970 infrenegsupex 9488 zfz1isolem1 10693 zfz1iso 10694 infxrnegsupex 11142 relogiso 13154 |
Copyright terms: Public domain | W3C validator |