Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isoeq1 | Unicode version |
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
Ref | Expression |
---|---|
isoeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq1 5421 | . . 3 | |
2 | fveq1 5485 | . . . . . 6 | |
3 | fveq1 5485 | . . . . . 6 | |
4 | 2, 3 | breq12d 3995 | . . . . 5 |
5 | 4 | bibi2d 231 | . . . 4 |
6 | 5 | 2ralbidv 2490 | . . 3 |
7 | 1, 6 | anbi12d 465 | . 2 |
8 | df-isom 5197 | . 2 | |
9 | df-isom 5197 | . 2 | |
10 | 7, 8, 9 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wral 2444 class class class wbr 3982 wf1o 5187 cfv 5188 wiso 5189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 |
This theorem is referenced by: isores1 5782 ordiso 7001 infrenegsupex 9532 zfz1isolem1 10753 zfz1iso 10754 infxrnegsupex 11204 relogiso 13444 |
Copyright terms: Public domain | W3C validator |