ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoeq1 Unicode version

Theorem isoeq1 5925
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq1  |-  ( H  =  G  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
G  Isom  R ,  S  ( A ,  B ) ) )

Proof of Theorem isoeq1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oeq1 5560 . . 3  |-  ( H  =  G  ->  ( H : A -1-1-onto-> B  <->  G : A -1-1-onto-> B ) )
2 fveq1 5626 . . . . . 6  |-  ( H  =  G  ->  ( H `  x )  =  ( G `  x ) )
3 fveq1 5626 . . . . . 6  |-  ( H  =  G  ->  ( H `  y )  =  ( G `  y ) )
42, 3breq12d 4096 . . . . 5  |-  ( H  =  G  ->  (
( H `  x
) S ( H `
 y )  <->  ( G `  x ) S ( G `  y ) ) )
54bibi2d 232 . . . 4  |-  ( H  =  G  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( x R y  <-> 
( G `  x
) S ( G `
 y ) ) ) )
652ralbidv 2554 . . 3  |-  ( H  =  G  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( G `  x
) S ( G `
 y ) ) ) )
71, 6anbi12d 473 . 2  |-  ( H  =  G  ->  (
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  <->  ( G : A
-1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( G `  x ) S ( G `  y ) ) ) ) )
8 df-isom 5327 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
9 df-isom 5327 . 2  |-  ( G 
Isom  R ,  S  ( A ,  B )  <-> 
( G : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( G `  x
) S ( G `
 y ) ) ) )
107, 8, 93bitr4g 223 1  |-  ( H  =  G  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
G  Isom  R ,  S  ( A ,  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   A.wral 2508   class class class wbr 4083   -1-1-onto->wf1o 5317   ` cfv 5318    Isom wiso 5319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327
This theorem is referenced by:  isores1  5938  ordiso  7203  infrenegsupex  9789  zfz1isolem1  11062  zfz1iso  11063  infxrnegsupex  11774  relogiso  15547
  Copyright terms: Public domain W3C validator