ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoid Unicode version

Theorem isoid 5832
Description: Identity law for isomorphism. Proposition 6.30(1) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isoid  |-  (  _I  |`  A )  Isom  R ,  R  ( A ,  A )

Proof of Theorem isoid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 5518 . 2  |-  (  _I  |`  A ) : A -1-1-onto-> A
2 fvresi 5730 . . . . 5  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
3 fvresi 5730 . . . . 5  |-  ( y  e.  A  ->  (
(  _I  |`  A ) `
 y )  =  y )
42, 3breqan12d 4034 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( (  _I  |`  A ) `  x
) R ( (  _I  |`  A ) `  y )  <->  x R
y ) )
54bicomd 141 . . 3  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <-> 
( (  _I  |`  A ) `
 x ) R ( (  _I  |`  A ) `
 y ) ) )
65rgen2a 2544 . 2  |-  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( (  _I  |`  A ) `  x ) R ( (  _I  |`  A ) `
 y ) )
7 df-isom 5244 . 2  |-  ( (  _I  |`  A )  Isom  R ,  R  ( A ,  A )  <-> 
( (  _I  |`  A ) : A -1-1-onto-> A  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( (  _I  |`  A ) `  x ) R ( (  _I  |`  A ) `
 y ) ) ) )
81, 6, 7mpbir2an 944 1  |-  (  _I  |`  A )  Isom  R ,  R  ( A ,  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2160   A.wral 2468   class class class wbr 4018    _I cid 4306    |` cres 4646   -1-1-onto->wf1o 5234   ` cfv 5235    Isom wiso 5236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244
This theorem is referenced by:  ordiso  7066
  Copyright terms: Public domain W3C validator