ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoid Unicode version

Theorem isoid 5892
Description: Identity law for isomorphism. Proposition 6.30(1) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isoid  |-  (  _I  |`  A )  Isom  R ,  R  ( A ,  A )

Proof of Theorem isoid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 5573 . 2  |-  (  _I  |`  A ) : A -1-1-onto-> A
2 fvresi 5790 . . . . 5  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
3 fvresi 5790 . . . . 5  |-  ( y  e.  A  ->  (
(  _I  |`  A ) `
 y )  =  y )
42, 3breqan12d 4067 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( (  _I  |`  A ) `  x
) R ( (  _I  |`  A ) `  y )  <->  x R
y ) )
54bicomd 141 . . 3  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <-> 
( (  _I  |`  A ) `
 x ) R ( (  _I  |`  A ) `
 y ) ) )
65rgen2a 2561 . 2  |-  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( (  _I  |`  A ) `  x ) R ( (  _I  |`  A ) `
 y ) )
7 df-isom 5289 . 2  |-  ( (  _I  |`  A )  Isom  R ,  R  ( A ,  A )  <-> 
( (  _I  |`  A ) : A -1-1-onto-> A  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( (  _I  |`  A ) `  x ) R ( (  _I  |`  A ) `
 y ) ) ) )
81, 6, 7mpbir2an 945 1  |-  (  _I  |`  A )  Isom  R ,  R  ( A ,  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2177   A.wral 2485   class class class wbr 4051    _I cid 4343    |` cres 4685   -1-1-onto->wf1o 5279   ` cfv 5280    Isom wiso 5281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289
This theorem is referenced by:  ordiso  7153
  Copyright terms: Public domain W3C validator