ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoid Unicode version

Theorem isoid 5857
Description: Identity law for isomorphism. Proposition 6.30(1) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isoid  |-  (  _I  |`  A )  Isom  R ,  R  ( A ,  A )

Proof of Theorem isoid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 5542 . 2  |-  (  _I  |`  A ) : A -1-1-onto-> A
2 fvresi 5755 . . . . 5  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
3 fvresi 5755 . . . . 5  |-  ( y  e.  A  ->  (
(  _I  |`  A ) `
 y )  =  y )
42, 3breqan12d 4049 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( (  _I  |`  A ) `  x
) R ( (  _I  |`  A ) `  y )  <->  x R
y ) )
54bicomd 141 . . 3  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <-> 
( (  _I  |`  A ) `
 x ) R ( (  _I  |`  A ) `
 y ) ) )
65rgen2a 2551 . 2  |-  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( (  _I  |`  A ) `  x ) R ( (  _I  |`  A ) `
 y ) )
7 df-isom 5267 . 2  |-  ( (  _I  |`  A )  Isom  R ,  R  ( A ,  A )  <-> 
( (  _I  |`  A ) : A -1-1-onto-> A  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( (  _I  |`  A ) `  x ) R ( (  _I  |`  A ) `
 y ) ) ) )
81, 6, 7mpbir2an 944 1  |-  (  _I  |`  A )  Isom  R ,  R  ( A ,  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2167   A.wral 2475   class class class wbr 4033    _I cid 4323    |` cres 4665   -1-1-onto->wf1o 5257   ` cfv 5258    Isom wiso 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267
This theorem is referenced by:  ordiso  7102
  Copyright terms: Public domain W3C validator