| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xrnegiso | Unicode version | ||
| Description: Negation is an order anti-isomorphism of the extended reals, which is its own inverse. (Contributed by Jim Kingdon, 2-May-2023.) | 
| Ref | Expression | 
|---|---|
| xrnegiso.1 | 
 | 
| Ref | Expression | 
|---|---|
| xrnegiso | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xrnegiso.1 | 
. . . . . 6
 | |
| 2 | simpr 110 | 
. . . . . . 7
 | |
| 3 | 2 | xnegcld 9930 | 
. . . . . 6
 | 
| 4 | simpr 110 | 
. . . . . . 7
 | |
| 5 | 4 | xnegcld 9930 | 
. . . . . 6
 | 
| 6 | xnegneg 9908 | 
. . . . . . . . . . 11
 | |
| 7 | 6 | eqeq2d 2208 | 
. . . . . . . . . 10
 | 
| 8 | 7 | adantr 276 | 
. . . . . . . . 9
 | 
| 9 | eqcom 2198 | 
. . . . . . . . 9
 | |
| 10 | 8, 9 | bitrdi 196 | 
. . . . . . . 8
 | 
| 11 | simpr 110 | 
. . . . . . . . 9
 | |
| 12 | xnegcl 9907 | 
. . . . . . . . . 10
 | |
| 13 | 12 | adantr 276 | 
. . . . . . . . 9
 | 
| 14 | xneg11 9909 | 
. . . . . . . . 9
 | |
| 15 | 11, 13, 14 | syl2anc 411 | 
. . . . . . . 8
 | 
| 16 | 10, 15 | bitr3d 190 | 
. . . . . . 7
 | 
| 17 | 16 | adantl 277 | 
. . . . . 6
 | 
| 18 | 1, 3, 5, 17 | f1ocnv2d 6127 | 
. . . . 5
 | 
| 19 | 18 | mptru 1373 | 
. . . 4
 | 
| 20 | 19 | simpli 111 | 
. . 3
 | 
| 21 | simpl 109 | 
. . . . . . 7
 | |
| 22 | 21 | xnegcld 9930 | 
. . . . . 6
 | 
| 23 | simpr 110 | 
. . . . . . 7
 | |
| 24 | 23 | xnegcld 9930 | 
. . . . . 6
 | 
| 25 | brcnvg 4847 | 
. . . . . 6
 | |
| 26 | 22, 24, 25 | syl2anc 411 | 
. . . . 5
 | 
| 27 | xnegeq 9902 | 
. . . . . . 7
 | |
| 28 | 1, 27, 21, 22 | fvmptd3 5655 | 
. . . . . 6
 | 
| 29 | xnegeq 9902 | 
. . . . . . 7
 | |
| 30 | 1, 29, 23, 24 | fvmptd3 5655 | 
. . . . . 6
 | 
| 31 | 28, 30 | breq12d 4046 | 
. . . . 5
 | 
| 32 | xltneg 9911 | 
. . . . 5
 | |
| 33 | 26, 31, 32 | 3bitr4rd 221 | 
. . . 4
 | 
| 34 | 33 | rgen2a 2551 | 
. . 3
 | 
| 35 | df-isom 5267 | 
. . 3
 | |
| 36 | 20, 34, 35 | mpbir2an 944 | 
. 2
 | 
| 37 | xnegeq 9902 | 
. . . 4
 | |
| 38 | 37 | cbvmptv 4129 | 
. . 3
 | 
| 39 | 19 | simpri 113 | 
. . 3
 | 
| 40 | 38, 39, 1 | 3eqtr4i 2227 | 
. 2
 | 
| 41 | 36, 40 | pm3.2i 272 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-sub 8199 df-neg 8200 df-xneg 9847 | 
| This theorem is referenced by: infxrnegsupex 11428 | 
| Copyright terms: Public domain | W3C validator |