Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrnegiso | Unicode version |
Description: Negation is an order anti-isomorphism of the extended reals, which is its own inverse. (Contributed by Jim Kingdon, 2-May-2023.) |
Ref | Expression |
---|---|
xrnegiso.1 |
Ref | Expression |
---|---|
xrnegiso |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnegiso.1 | . . . . . 6 | |
2 | simpr 109 | . . . . . . 7 | |
3 | 2 | xnegcld 9752 | . . . . . 6 |
4 | simpr 109 | . . . . . . 7 | |
5 | 4 | xnegcld 9752 | . . . . . 6 |
6 | xnegneg 9730 | . . . . . . . . . . 11 | |
7 | 6 | eqeq2d 2169 | . . . . . . . . . 10 |
8 | 7 | adantr 274 | . . . . . . . . 9 |
9 | eqcom 2159 | . . . . . . . . 9 | |
10 | 8, 9 | bitrdi 195 | . . . . . . . 8 |
11 | simpr 109 | . . . . . . . . 9 | |
12 | xnegcl 9729 | . . . . . . . . . 10 | |
13 | 12 | adantr 274 | . . . . . . . . 9 |
14 | xneg11 9731 | . . . . . . . . 9 | |
15 | 11, 13, 14 | syl2anc 409 | . . . . . . . 8 |
16 | 10, 15 | bitr3d 189 | . . . . . . 7 |
17 | 16 | adantl 275 | . . . . . 6 |
18 | 1, 3, 5, 17 | f1ocnv2d 6021 | . . . . 5 |
19 | 18 | mptru 1344 | . . . 4 |
20 | 19 | simpli 110 | . . 3 |
21 | simpl 108 | . . . . . . 7 | |
22 | 21 | xnegcld 9752 | . . . . . 6 |
23 | simpr 109 | . . . . . . 7 | |
24 | 23 | xnegcld 9752 | . . . . . 6 |
25 | brcnvg 4766 | . . . . . 6 | |
26 | 22, 24, 25 | syl2anc 409 | . . . . 5 |
27 | xnegeq 9724 | . . . . . . 7 | |
28 | 1, 27, 21, 22 | fvmptd3 5560 | . . . . . 6 |
29 | xnegeq 9724 | . . . . . . 7 | |
30 | 1, 29, 23, 24 | fvmptd3 5560 | . . . . . 6 |
31 | 28, 30 | breq12d 3978 | . . . . 5 |
32 | xltneg 9733 | . . . . 5 | |
33 | 26, 31, 32 | 3bitr4rd 220 | . . . 4 |
34 | 33 | rgen2a 2511 | . . 3 |
35 | df-isom 5178 | . . 3 | |
36 | 20, 34, 35 | mpbir2an 927 | . 2 |
37 | xnegeq 9724 | . . . 4 | |
38 | 37 | cbvmptv 4060 | . . 3 |
39 | 19 | simpri 112 | . . 3 |
40 | 38, 39, 1 | 3eqtr4i 2188 | . 2 |
41 | 36, 40 | pm3.2i 270 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1335 wtru 1336 wcel 2128 wral 2435 class class class wbr 3965 cmpt 4025 ccnv 4584 wf1o 5168 cfv 5169 wiso 5170 cxr 7905 clt 7906 cxne 9669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-addass 7828 ax-distr 7830 ax-i2m1 7831 ax-0id 7834 ax-rnegex 7835 ax-cnre 7837 ax-pre-ltadd 7842 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-isom 5178 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-sub 8042 df-neg 8043 df-xneg 9672 |
This theorem is referenced by: infxrnegsupex 11153 |
Copyright terms: Public domain | W3C validator |