ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrnegiso Unicode version

Theorem xrnegiso 11606
Description: Negation is an order anti-isomorphism of the extended reals, which is its own inverse. (Contributed by Jim Kingdon, 2-May-2023.)
Hypothesis
Ref Expression
xrnegiso.1  |-  F  =  ( x  e.  RR*  |->  -e x )
Assertion
Ref Expression
xrnegiso  |-  ( F 
Isom  <  ,  `'  <  (
RR* ,  RR* )  /\  `' F  =  F
)

Proof of Theorem xrnegiso
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrnegiso.1 . . . . . 6  |-  F  =  ( x  e.  RR*  |->  -e x )
2 simpr 110 . . . . . . 7  |-  ( ( T.  /\  x  e. 
RR* )  ->  x  e.  RR* )
32xnegcld 9979 . . . . . 6  |-  ( ( T.  /\  x  e. 
RR* )  ->  -e
x  e.  RR* )
4 simpr 110 . . . . . . 7  |-  ( ( T.  /\  y  e. 
RR* )  ->  y  e.  RR* )
54xnegcld 9979 . . . . . 6  |-  ( ( T.  /\  y  e. 
RR* )  ->  -e
y  e.  RR* )
6 xnegneg 9957 . . . . . . . . . . 11  |-  ( x  e.  RR*  ->  -e  -e x  =  x )
76eqeq2d 2217 . . . . . . . . . 10  |-  ( x  e.  RR*  ->  (  -e y  =  -e  -e x  <->  -e y  =  x ) )
87adantr 276 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (  -e y  =  -e  -e x  <->  -e y  =  x ) )
9 eqcom 2207 . . . . . . . . 9  |-  (  -e y  =  x  <-> 
x  =  -e
y )
108, 9bitrdi 196 . . . . . . . 8  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (  -e y  =  -e  -e x  <->  x  =  -e y ) )
11 simpr 110 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  y  e.  RR* )
12 xnegcl 9956 . . . . . . . . . 10  |-  ( x  e.  RR*  ->  -e
x  e.  RR* )
1312adantr 276 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  -e
x  e.  RR* )
14 xneg11 9958 . . . . . . . . 9  |-  ( ( y  e.  RR*  /\  -e
x  e.  RR* )  ->  (  -e y  =  -e  -e x  <->  y  =  -e x ) )
1511, 13, 14syl2anc 411 . . . . . . . 8  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (  -e y  =  -e  -e x  <->  y  =  -e x ) )
1610, 15bitr3d 190 . . . . . . 7  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  =  -e
y  <->  y  =  -e x ) )
1716adantl 277 . . . . . 6  |-  ( ( T.  /\  ( x  e.  RR*  /\  y  e.  RR* ) )  -> 
( x  =  -e y  <->  y  =  -e x ) )
181, 3, 5, 17f1ocnv2d 6152 . . . . 5  |-  ( T. 
->  ( F : RR* -1-1-onto-> RR*  /\  `' F  =  (
y  e.  RR*  |->  -e
y ) ) )
1918mptru 1382 . . . 4  |-  ( F : RR* -1-1-onto-> RR*  /\  `' F  =  ( y  e. 
RR*  |->  -e y ) )
2019simpli 111 . . 3  |-  F : RR*
-1-1-onto-> RR*
21 simpl 109 . . . . . . 7  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  z  e.  RR* )
2221xnegcld 9979 . . . . . 6  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  -e
z  e.  RR* )
23 simpr 110 . . . . . . 7  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  y  e.  RR* )
2423xnegcld 9979 . . . . . 6  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  -e
y  e.  RR* )
25 brcnvg 4860 . . . . . 6  |-  ( ( 
-e z  e. 
RR*  /\  -e y  e.  RR* )  ->  (  -e z `'  <  -e y  <->  -e y  <  -e z ) )
2622, 24, 25syl2anc 411 . . . . 5  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  (  -e z `'  <  -e y  <->  -e y  <  -e z ) )
27 xnegeq 9951 . . . . . . 7  |-  ( x  =  z  ->  -e
x  =  -e
z )
281, 27, 21, 22fvmptd3 5675 . . . . . 6  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  ( F `  z )  =  -e z )
29 xnegeq 9951 . . . . . . 7  |-  ( x  =  y  ->  -e
x  =  -e
y )
301, 29, 23, 24fvmptd3 5675 . . . . . 6  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  ( F `  y )  =  -e y )
3128, 30breq12d 4058 . . . . 5  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  (
( F `  z
) `'  <  ( F `  y )  <->  -e z `'  <  -e y ) )
32 xltneg 9960 . . . . 5  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  (
z  <  y  <->  -e y  <  -e z ) )
3326, 31, 323bitr4rd 221 . . . 4  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  (
z  <  y  <->  ( F `  z ) `'  <  ( F `  y ) ) )
3433rgen2a 2560 . . 3  |-  A. z  e.  RR*  A. y  e. 
RR*  ( z  < 
y  <->  ( F `  z ) `'  <  ( F `  y ) )
35 df-isom 5281 . . 3  |-  ( F 
Isom  <  ,  `'  <  (
RR* ,  RR* )  <->  ( F : RR*
-1-1-onto-> RR* 
/\  A. z  e.  RR*  A. y  e.  RR*  (
z  <  y  <->  ( F `  z ) `'  <  ( F `  y ) ) ) )
3620, 34, 35mpbir2an 945 . 2  |-  F  Isom  <  ,  `'  <  ( RR* , 
RR* )
37 xnegeq 9951 . . . 4  |-  ( y  =  x  ->  -e
y  =  -e
x )
3837cbvmptv 4141 . . 3  |-  ( y  e.  RR*  |->  -e
y )  =  ( x  e.  RR*  |->  -e
x )
3919simpri 113 . . 3  |-  `' F  =  ( y  e. 
RR*  |->  -e y )
4038, 39, 13eqtr4i 2236 . 2  |-  `' F  =  F
4136, 40pm3.2i 272 1  |-  ( F 
Isom  <  ,  `'  <  (
RR* ,  RR* )  /\  `' F  =  F
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   T. wtru 1374    e. wcel 2176   A.wral 2484   class class class wbr 4045    |-> cmpt 4106   `'ccnv 4675   -1-1-onto->wf1o 5271   ` cfv 5272    Isom wiso 5273   RR*cxr 8108    < clt 8109    -ecxne 9893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-sub 8247  df-neg 8248  df-xneg 9896
This theorem is referenced by:  infxrnegsupex  11607
  Copyright terms: Public domain W3C validator