ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrnegiso Unicode version

Theorem xrnegiso 11152
Description: Negation is an order anti-isomorphism of the extended reals, which is its own inverse. (Contributed by Jim Kingdon, 2-May-2023.)
Hypothesis
Ref Expression
xrnegiso.1  |-  F  =  ( x  e.  RR*  |->  -e x )
Assertion
Ref Expression
xrnegiso  |-  ( F 
Isom  <  ,  `'  <  (
RR* ,  RR* )  /\  `' F  =  F
)

Proof of Theorem xrnegiso
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrnegiso.1 . . . . . 6  |-  F  =  ( x  e.  RR*  |->  -e x )
2 simpr 109 . . . . . . 7  |-  ( ( T.  /\  x  e. 
RR* )  ->  x  e.  RR* )
32xnegcld 9752 . . . . . 6  |-  ( ( T.  /\  x  e. 
RR* )  ->  -e
x  e.  RR* )
4 simpr 109 . . . . . . 7  |-  ( ( T.  /\  y  e. 
RR* )  ->  y  e.  RR* )
54xnegcld 9752 . . . . . 6  |-  ( ( T.  /\  y  e. 
RR* )  ->  -e
y  e.  RR* )
6 xnegneg 9730 . . . . . . . . . . 11  |-  ( x  e.  RR*  ->  -e  -e x  =  x )
76eqeq2d 2169 . . . . . . . . . 10  |-  ( x  e.  RR*  ->  (  -e y  =  -e  -e x  <->  -e y  =  x ) )
87adantr 274 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (  -e y  =  -e  -e x  <->  -e y  =  x ) )
9 eqcom 2159 . . . . . . . . 9  |-  (  -e y  =  x  <-> 
x  =  -e
y )
108, 9bitrdi 195 . . . . . . . 8  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (  -e y  =  -e  -e x  <->  x  =  -e y ) )
11 simpr 109 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  y  e.  RR* )
12 xnegcl 9729 . . . . . . . . . 10  |-  ( x  e.  RR*  ->  -e
x  e.  RR* )
1312adantr 274 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  -e
x  e.  RR* )
14 xneg11 9731 . . . . . . . . 9  |-  ( ( y  e.  RR*  /\  -e
x  e.  RR* )  ->  (  -e y  =  -e  -e x  <->  y  =  -e x ) )
1511, 13, 14syl2anc 409 . . . . . . . 8  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (  -e y  =  -e  -e x  <->  y  =  -e x ) )
1610, 15bitr3d 189 . . . . . . 7  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  =  -e
y  <->  y  =  -e x ) )
1716adantl 275 . . . . . 6  |-  ( ( T.  /\  ( x  e.  RR*  /\  y  e.  RR* ) )  -> 
( x  =  -e y  <->  y  =  -e x ) )
181, 3, 5, 17f1ocnv2d 6021 . . . . 5  |-  ( T. 
->  ( F : RR* -1-1-onto-> RR*  /\  `' F  =  (
y  e.  RR*  |->  -e
y ) ) )
1918mptru 1344 . . . 4  |-  ( F : RR* -1-1-onto-> RR*  /\  `' F  =  ( y  e. 
RR*  |->  -e y ) )
2019simpli 110 . . 3  |-  F : RR*
-1-1-onto-> RR*
21 simpl 108 . . . . . . 7  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  z  e.  RR* )
2221xnegcld 9752 . . . . . 6  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  -e
z  e.  RR* )
23 simpr 109 . . . . . . 7  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  y  e.  RR* )
2423xnegcld 9752 . . . . . 6  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  -e
y  e.  RR* )
25 brcnvg 4766 . . . . . 6  |-  ( ( 
-e z  e. 
RR*  /\  -e y  e.  RR* )  ->  (  -e z `'  <  -e y  <->  -e y  <  -e z ) )
2622, 24, 25syl2anc 409 . . . . 5  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  (  -e z `'  <  -e y  <->  -e y  <  -e z ) )
27 xnegeq 9724 . . . . . . 7  |-  ( x  =  z  ->  -e
x  =  -e
z )
281, 27, 21, 22fvmptd3 5560 . . . . . 6  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  ( F `  z )  =  -e z )
29 xnegeq 9724 . . . . . . 7  |-  ( x  =  y  ->  -e
x  =  -e
y )
301, 29, 23, 24fvmptd3 5560 . . . . . 6  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  ( F `  y )  =  -e y )
3128, 30breq12d 3978 . . . . 5  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  (
( F `  z
) `'  <  ( F `  y )  <->  -e z `'  <  -e y ) )
32 xltneg 9733 . . . . 5  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  (
z  <  y  <->  -e y  <  -e z ) )
3326, 31, 323bitr4rd 220 . . . 4  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  (
z  <  y  <->  ( F `  z ) `'  <  ( F `  y ) ) )
3433rgen2a 2511 . . 3  |-  A. z  e.  RR*  A. y  e. 
RR*  ( z  < 
y  <->  ( F `  z ) `'  <  ( F `  y ) )
35 df-isom 5178 . . 3  |-  ( F 
Isom  <  ,  `'  <  (
RR* ,  RR* )  <->  ( F : RR*
-1-1-onto-> RR* 
/\  A. z  e.  RR*  A. y  e.  RR*  (
z  <  y  <->  ( F `  z ) `'  <  ( F `  y ) ) ) )
3620, 34, 35mpbir2an 927 . 2  |-  F  Isom  <  ,  `'  <  ( RR* , 
RR* )
37 xnegeq 9724 . . . 4  |-  ( y  =  x  ->  -e
y  =  -e
x )
3837cbvmptv 4060 . . 3  |-  ( y  e.  RR*  |->  -e
y )  =  ( x  e.  RR*  |->  -e
x )
3919simpri 112 . . 3  |-  `' F  =  ( y  e. 
RR*  |->  -e y )
4038, 39, 13eqtr4i 2188 . 2  |-  `' F  =  F
4136, 40pm3.2i 270 1  |-  ( F 
Isom  <  ,  `'  <  (
RR* ,  RR* )  /\  `' F  =  F
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1335   T. wtru 1336    e. wcel 2128   A.wral 2435   class class class wbr 3965    |-> cmpt 4025   `'ccnv 4584   -1-1-onto->wf1o 5168   ` cfv 5169    Isom wiso 5170   RR*cxr 7905    < clt 7906    -ecxne 9669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-addcom 7826  ax-addass 7828  ax-distr 7830  ax-i2m1 7831  ax-0id 7834  ax-rnegex 7835  ax-cnre 7837  ax-pre-ltadd 7842
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-isom 5178  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-sub 8042  df-neg 8043  df-xneg 9672
This theorem is referenced by:  infxrnegsupex  11153
  Copyright terms: Public domain W3C validator