ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrnegiso Unicode version

Theorem xrnegiso 11427
Description: Negation is an order anti-isomorphism of the extended reals, which is its own inverse. (Contributed by Jim Kingdon, 2-May-2023.)
Hypothesis
Ref Expression
xrnegiso.1  |-  F  =  ( x  e.  RR*  |->  -e x )
Assertion
Ref Expression
xrnegiso  |-  ( F 
Isom  <  ,  `'  <  (
RR* ,  RR* )  /\  `' F  =  F
)

Proof of Theorem xrnegiso
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrnegiso.1 . . . . . 6  |-  F  =  ( x  e.  RR*  |->  -e x )
2 simpr 110 . . . . . . 7  |-  ( ( T.  /\  x  e. 
RR* )  ->  x  e.  RR* )
32xnegcld 9930 . . . . . 6  |-  ( ( T.  /\  x  e. 
RR* )  ->  -e
x  e.  RR* )
4 simpr 110 . . . . . . 7  |-  ( ( T.  /\  y  e. 
RR* )  ->  y  e.  RR* )
54xnegcld 9930 . . . . . 6  |-  ( ( T.  /\  y  e. 
RR* )  ->  -e
y  e.  RR* )
6 xnegneg 9908 . . . . . . . . . . 11  |-  ( x  e.  RR*  ->  -e  -e x  =  x )
76eqeq2d 2208 . . . . . . . . . 10  |-  ( x  e.  RR*  ->  (  -e y  =  -e  -e x  <->  -e y  =  x ) )
87adantr 276 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (  -e y  =  -e  -e x  <->  -e y  =  x ) )
9 eqcom 2198 . . . . . . . . 9  |-  (  -e y  =  x  <-> 
x  =  -e
y )
108, 9bitrdi 196 . . . . . . . 8  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (  -e y  =  -e  -e x  <->  x  =  -e y ) )
11 simpr 110 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  y  e.  RR* )
12 xnegcl 9907 . . . . . . . . . 10  |-  ( x  e.  RR*  ->  -e
x  e.  RR* )
1312adantr 276 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  -e
x  e.  RR* )
14 xneg11 9909 . . . . . . . . 9  |-  ( ( y  e.  RR*  /\  -e
x  e.  RR* )  ->  (  -e y  =  -e  -e x  <->  y  =  -e x ) )
1511, 13, 14syl2anc 411 . . . . . . . 8  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (  -e y  =  -e  -e x  <->  y  =  -e x ) )
1610, 15bitr3d 190 . . . . . . 7  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  =  -e
y  <->  y  =  -e x ) )
1716adantl 277 . . . . . 6  |-  ( ( T.  /\  ( x  e.  RR*  /\  y  e.  RR* ) )  -> 
( x  =  -e y  <->  y  =  -e x ) )
181, 3, 5, 17f1ocnv2d 6127 . . . . 5  |-  ( T. 
->  ( F : RR* -1-1-onto-> RR*  /\  `' F  =  (
y  e.  RR*  |->  -e
y ) ) )
1918mptru 1373 . . . 4  |-  ( F : RR* -1-1-onto-> RR*  /\  `' F  =  ( y  e. 
RR*  |->  -e y ) )
2019simpli 111 . . 3  |-  F : RR*
-1-1-onto-> RR*
21 simpl 109 . . . . . . 7  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  z  e.  RR* )
2221xnegcld 9930 . . . . . 6  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  -e
z  e.  RR* )
23 simpr 110 . . . . . . 7  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  y  e.  RR* )
2423xnegcld 9930 . . . . . 6  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  -e
y  e.  RR* )
25 brcnvg 4847 . . . . . 6  |-  ( ( 
-e z  e. 
RR*  /\  -e y  e.  RR* )  ->  (  -e z `'  <  -e y  <->  -e y  <  -e z ) )
2622, 24, 25syl2anc 411 . . . . 5  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  (  -e z `'  <  -e y  <->  -e y  <  -e z ) )
27 xnegeq 9902 . . . . . . 7  |-  ( x  =  z  ->  -e
x  =  -e
z )
281, 27, 21, 22fvmptd3 5655 . . . . . 6  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  ( F `  z )  =  -e z )
29 xnegeq 9902 . . . . . . 7  |-  ( x  =  y  ->  -e
x  =  -e
y )
301, 29, 23, 24fvmptd3 5655 . . . . . 6  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  ( F `  y )  =  -e y )
3128, 30breq12d 4046 . . . . 5  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  (
( F `  z
) `'  <  ( F `  y )  <->  -e z `'  <  -e y ) )
32 xltneg 9911 . . . . 5  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  (
z  <  y  <->  -e y  <  -e z ) )
3326, 31, 323bitr4rd 221 . . . 4  |-  ( ( z  e.  RR*  /\  y  e.  RR* )  ->  (
z  <  y  <->  ( F `  z ) `'  <  ( F `  y ) ) )
3433rgen2a 2551 . . 3  |-  A. z  e.  RR*  A. y  e. 
RR*  ( z  < 
y  <->  ( F `  z ) `'  <  ( F `  y ) )
35 df-isom 5267 . . 3  |-  ( F 
Isom  <  ,  `'  <  (
RR* ,  RR* )  <->  ( F : RR*
-1-1-onto-> RR* 
/\  A. z  e.  RR*  A. y  e.  RR*  (
z  <  y  <->  ( F `  z ) `'  <  ( F `  y ) ) ) )
3620, 34, 35mpbir2an 944 . 2  |-  F  Isom  <  ,  `'  <  ( RR* , 
RR* )
37 xnegeq 9902 . . . 4  |-  ( y  =  x  ->  -e
y  =  -e
x )
3837cbvmptv 4129 . . 3  |-  ( y  e.  RR*  |->  -e
y )  =  ( x  e.  RR*  |->  -e
x )
3919simpri 113 . . 3  |-  `' F  =  ( y  e. 
RR*  |->  -e y )
4038, 39, 13eqtr4i 2227 . 2  |-  `' F  =  F
4136, 40pm3.2i 272 1  |-  ( F 
Isom  <  ,  `'  <  (
RR* ,  RR* )  /\  `' F  =  F
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   T. wtru 1365    e. wcel 2167   A.wral 2475   class class class wbr 4033    |-> cmpt 4094   `'ccnv 4662   -1-1-onto->wf1o 5257   ` cfv 5258    Isom wiso 5259   RR*cxr 8060    < clt 8061    -ecxne 9844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-sub 8199  df-neg 8200  df-xneg 9847
This theorem is referenced by:  infxrnegsupex  11428
  Copyright terms: Public domain W3C validator