| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > isores3 | Unicode version | ||
| Description: Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| isores3 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f1of1 5503 | 
. . . . . . 7
 | |
| 2 | f1ores 5519 | 
. . . . . . . 8
 | |
| 3 | 2 | expcom 116 | 
. . . . . . 7
 | 
| 4 | 1, 3 | syl5 32 | 
. . . . . 6
 | 
| 5 | ssralv 3247 | 
. . . . . . 7
 | |
| 6 | ssralv 3247 | 
. . . . . . . . . 10
 | |
| 7 | 6 | adantr 276 | 
. . . . . . . . 9
 | 
| 8 | fvres 5582 | 
. . . . . . . . . . . . . 14
 | |
| 9 | fvres 5582 | 
. . . . . . . . . . . . . 14
 | |
| 10 | 8, 9 | breqan12d 4049 | 
. . . . . . . . . . . . 13
 | 
| 11 | 10 | adantll 476 | 
. . . . . . . . . . . 12
 | 
| 12 | 11 | bibi2d 232 | 
. . . . . . . . . . 11
 | 
| 13 | 12 | biimprd 158 | 
. . . . . . . . . 10
 | 
| 14 | 13 | ralimdva 2564 | 
. . . . . . . . 9
 | 
| 15 | 7, 14 | syld 45 | 
. . . . . . . 8
 | 
| 16 | 15 | ralimdva 2564 | 
. . . . . . 7
 | 
| 17 | 5, 16 | syld 45 | 
. . . . . 6
 | 
| 18 | 4, 17 | anim12d 335 | 
. . . . 5
 | 
| 19 | df-isom 5267 | 
. . . . 5
 | |
| 20 | df-isom 5267 | 
. . . . 5
 | |
| 21 | 18, 19, 20 | 3imtr4g 205 | 
. . . 4
 | 
| 22 | 21 | impcom 125 | 
. . 3
 | 
| 23 | isoeq5 5852 | 
. . 3
 | |
| 24 | 22, 23 | syl5ibrcom 157 | 
. 2
 | 
| 25 | 24 | 3impia 1202 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |