Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isores3 | Unicode version |
Description: Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
Ref | Expression |
---|---|
isores3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of1 5441 | . . . . . . 7 | |
2 | f1ores 5457 | . . . . . . . 8 | |
3 | 2 | expcom 115 | . . . . . . 7 |
4 | 1, 3 | syl5 32 | . . . . . 6 |
5 | ssralv 3211 | . . . . . . 7 | |
6 | ssralv 3211 | . . . . . . . . . 10 | |
7 | 6 | adantr 274 | . . . . . . . . 9 |
8 | fvres 5520 | . . . . . . . . . . . . . 14 | |
9 | fvres 5520 | . . . . . . . . . . . . . 14 | |
10 | 8, 9 | breqan12d 4005 | . . . . . . . . . . . . 13 |
11 | 10 | adantll 473 | . . . . . . . . . . . 12 |
12 | 11 | bibi2d 231 | . . . . . . . . . . 11 |
13 | 12 | biimprd 157 | . . . . . . . . . 10 |
14 | 13 | ralimdva 2537 | . . . . . . . . 9 |
15 | 7, 14 | syld 45 | . . . . . . . 8 |
16 | 15 | ralimdva 2537 | . . . . . . 7 |
17 | 5, 16 | syld 45 | . . . . . 6 |
18 | 4, 17 | anim12d 333 | . . . . 5 |
19 | df-isom 5207 | . . . . 5 | |
20 | df-isom 5207 | . . . . 5 | |
21 | 18, 19, 20 | 3imtr4g 204 | . . . 4 |
22 | 21 | impcom 124 | . . 3 |
23 | isoeq5 5784 | . . 3 | |
24 | 22, 23 | syl5ibrcom 156 | . 2 |
25 | 24 | 3impia 1195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 wss 3121 class class class wbr 3989 cres 4613 cima 4614 wf1 5195 wf1o 5197 cfv 5198 wiso 5199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |