Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isores3 | Unicode version |
Description: Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
Ref | Expression |
---|---|
isores3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of1 5431 | . . . . . . 7 | |
2 | f1ores 5447 | . . . . . . . 8 | |
3 | 2 | expcom 115 | . . . . . . 7 |
4 | 1, 3 | syl5 32 | . . . . . 6 |
5 | ssralv 3206 | . . . . . . 7 | |
6 | ssralv 3206 | . . . . . . . . . 10 | |
7 | 6 | adantr 274 | . . . . . . . . 9 |
8 | fvres 5510 | . . . . . . . . . . . . . 14 | |
9 | fvres 5510 | . . . . . . . . . . . . . 14 | |
10 | 8, 9 | breqan12d 3998 | . . . . . . . . . . . . 13 |
11 | 10 | adantll 468 | . . . . . . . . . . . 12 |
12 | 11 | bibi2d 231 | . . . . . . . . . . 11 |
13 | 12 | biimprd 157 | . . . . . . . . . 10 |
14 | 13 | ralimdva 2533 | . . . . . . . . 9 |
15 | 7, 14 | syld 45 | . . . . . . . 8 |
16 | 15 | ralimdva 2533 | . . . . . . 7 |
17 | 5, 16 | syld 45 | . . . . . 6 |
18 | 4, 17 | anim12d 333 | . . . . 5 |
19 | df-isom 5197 | . . . . 5 | |
20 | df-isom 5197 | . . . . 5 | |
21 | 18, 19, 20 | 3imtr4g 204 | . . . 4 |
22 | 21 | impcom 124 | . . 3 |
23 | isoeq5 5773 | . . 3 | |
24 | 22, 23 | syl5ibrcom 156 | . 2 |
25 | 24 | 3impia 1190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wral 2444 wss 3116 class class class wbr 3982 cres 4606 cima 4607 wf1 5185 wf1o 5187 cfv 5188 wiso 5189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |