ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isores3 Unicode version

Theorem isores3 5858
Description: Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Assertion
Ref Expression
isores3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  K  C_  A  /\  X  =  ( H " K
) )  ->  ( H  |`  K )  Isom  R ,  S  ( K ,  X ) )

Proof of Theorem isores3
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of1 5499 . . . . . . 7  |-  ( H : A -1-1-onto-> B  ->  H : A -1-1-> B )
2 f1ores 5515 . . . . . . . 8  |-  ( ( H : A -1-1-> B  /\  K  C_  A )  ->  ( H  |`  K ) : K -1-1-onto-> ( H " K ) )
32expcom 116 . . . . . . 7  |-  ( K 
C_  A  ->  ( H : A -1-1-> B  -> 
( H  |`  K ) : K -1-1-onto-> ( H " K
) ) )
41, 3syl5 32 . . . . . 6  |-  ( K 
C_  A  ->  ( H : A -1-1-onto-> B  ->  ( H  |`  K ) : K -1-1-onto-> ( H " K ) ) )
5 ssralv 3243 . . . . . . 7  |-  ( K 
C_  A  ->  ( A. a  e.  A  A. b  e.  A  ( a R b  <-> 
( H `  a
) S ( H `
 b ) )  ->  A. a  e.  K  A. b  e.  A  ( a R b  <-> 
( H `  a
) S ( H `
 b ) ) ) )
6 ssralv 3243 . . . . . . . . . 10  |-  ( K 
C_  A  ->  ( A. b  e.  A  ( a R b  <-> 
( H `  a
) S ( H `
 b ) )  ->  A. b  e.  K  ( a R b  <-> 
( H `  a
) S ( H `
 b ) ) ) )
76adantr 276 . . . . . . . . 9  |-  ( ( K  C_  A  /\  a  e.  K )  ->  ( A. b  e.  A  ( a R b  <->  ( H `  a ) S ( H `  b ) )  ->  A. b  e.  K  ( a R b  <->  ( H `  a ) S ( H `  b ) ) ) )
8 fvres 5578 . . . . . . . . . . . . . 14  |-  ( a  e.  K  ->  (
( H  |`  K ) `
 a )  =  ( H `  a
) )
9 fvres 5578 . . . . . . . . . . . . . 14  |-  ( b  e.  K  ->  (
( H  |`  K ) `
 b )  =  ( H `  b
) )
108, 9breqan12d 4045 . . . . . . . . . . . . 13  |-  ( ( a  e.  K  /\  b  e.  K )  ->  ( ( ( H  |`  K ) `  a
) S ( ( H  |`  K ) `  b )  <->  ( H `  a ) S ( H `  b ) ) )
1110adantll 476 . . . . . . . . . . . 12  |-  ( ( ( K  C_  A  /\  a  e.  K
)  /\  b  e.  K )  ->  (
( ( H  |`  K ) `  a
) S ( ( H  |`  K ) `  b )  <->  ( H `  a ) S ( H `  b ) ) )
1211bibi2d 232 . . . . . . . . . . 11  |-  ( ( ( K  C_  A  /\  a  e.  K
)  /\  b  e.  K )  ->  (
( a R b  <-> 
( ( H  |`  K ) `  a
) S ( ( H  |`  K ) `  b ) )  <->  ( a R b  <->  ( H `  a ) S ( H `  b ) ) ) )
1312biimprd 158 . . . . . . . . . 10  |-  ( ( ( K  C_  A  /\  a  e.  K
)  /\  b  e.  K )  ->  (
( a R b  <-> 
( H `  a
) S ( H `
 b ) )  ->  ( a R b  <->  ( ( H  |`  K ) `  a
) S ( ( H  |`  K ) `  b ) ) ) )
1413ralimdva 2561 . . . . . . . . 9  |-  ( ( K  C_  A  /\  a  e.  K )  ->  ( A. b  e.  K  ( a R b  <->  ( H `  a ) S ( H `  b ) )  ->  A. b  e.  K  ( a R b  <->  ( ( H  |`  K ) `  a ) S ( ( H  |`  K ) `
 b ) ) ) )
157, 14syld 45 . . . . . . . 8  |-  ( ( K  C_  A  /\  a  e.  K )  ->  ( A. b  e.  A  ( a R b  <->  ( H `  a ) S ( H `  b ) )  ->  A. b  e.  K  ( a R b  <->  ( ( H  |`  K ) `  a ) S ( ( H  |`  K ) `
 b ) ) ) )
1615ralimdva 2561 . . . . . . 7  |-  ( K 
C_  A  ->  ( A. a  e.  K  A. b  e.  A  ( a R b  <-> 
( H `  a
) S ( H `
 b ) )  ->  A. a  e.  K  A. b  e.  K  ( a R b  <-> 
( ( H  |`  K ) `  a
) S ( ( H  |`  K ) `  b ) ) ) )
175, 16syld 45 . . . . . 6  |-  ( K 
C_  A  ->  ( A. a  e.  A  A. b  e.  A  ( a R b  <-> 
( H `  a
) S ( H `
 b ) )  ->  A. a  e.  K  A. b  e.  K  ( a R b  <-> 
( ( H  |`  K ) `  a
) S ( ( H  |`  K ) `  b ) ) ) )
184, 17anim12d 335 . . . . 5  |-  ( K 
C_  A  ->  (
( H : A -1-1-onto-> B  /\  A. a  e.  A  A. b  e.  A  ( a R b  <-> 
( H `  a
) S ( H `
 b ) ) )  ->  ( ( H  |`  K ) : K -1-1-onto-> ( H " K
)  /\  A. a  e.  K  A. b  e.  K  ( a R b  <->  ( ( H  |`  K ) `  a ) S ( ( H  |`  K ) `
 b ) ) ) ) )
19 df-isom 5263 . . . . 5  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. a  e.  A  A. b  e.  A  ( a R b  <-> 
( H `  a
) S ( H `
 b ) ) ) )
20 df-isom 5263 . . . . 5  |-  ( ( H  |`  K )  Isom  R ,  S  ( K ,  ( H
" K ) )  <-> 
( ( H  |`  K ) : K -1-1-onto-> ( H " K )  /\  A. a  e.  K  A. b  e.  K  (
a R b  <->  ( ( H  |`  K ) `  a ) S ( ( H  |`  K ) `
 b ) ) ) )
2118, 19, 203imtr4g 205 . . . 4  |-  ( K 
C_  A  ->  ( H  Isom  R ,  S  ( A ,  B )  ->  ( H  |`  K )  Isom  R ,  S  ( K ,  ( H " K ) ) ) )
2221impcom 125 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  K  C_  A )  ->  ( H  |`  K )  Isom  R ,  S  ( K ,  ( H " K ) ) )
23 isoeq5 5848 . . 3  |-  ( X  =  ( H " K )  ->  (
( H  |`  K ) 
Isom  R ,  S  ( K ,  X )  <-> 
( H  |`  K ) 
Isom  R ,  S  ( K ,  ( H
" K ) ) ) )
2422, 23syl5ibrcom 157 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  K  C_  A )  ->  ( X  =  ( H " K )  ->  ( H  |`  K )  Isom  R ,  S  ( K ,  X ) ) )
25243impia 1202 1  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  K  C_  A  /\  X  =  ( H " K
) )  ->  ( H  |`  K )  Isom  R ,  S  ( K ,  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3153   class class class wbr 4029    |` cres 4661   "cima 4662   -1-1->wf1 5251   -1-1-onto->wf1o 5253   ` cfv 5254    Isom wiso 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator