| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isores3 | Unicode version | ||
| Description: Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
| Ref | Expression |
|---|---|
| isores3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of1 5571 |
. . . . . . 7
| |
| 2 | f1ores 5587 |
. . . . . . . 8
| |
| 3 | 2 | expcom 116 |
. . . . . . 7
|
| 4 | 1, 3 | syl5 32 |
. . . . . 6
|
| 5 | ssralv 3288 |
. . . . . . 7
| |
| 6 | ssralv 3288 |
. . . . . . . . . 10
| |
| 7 | 6 | adantr 276 |
. . . . . . . . 9
|
| 8 | fvres 5651 |
. . . . . . . . . . . . . 14
| |
| 9 | fvres 5651 |
. . . . . . . . . . . . . 14
| |
| 10 | 8, 9 | breqan12d 4099 |
. . . . . . . . . . . . 13
|
| 11 | 10 | adantll 476 |
. . . . . . . . . . . 12
|
| 12 | 11 | bibi2d 232 |
. . . . . . . . . . 11
|
| 13 | 12 | biimprd 158 |
. . . . . . . . . 10
|
| 14 | 13 | ralimdva 2597 |
. . . . . . . . 9
|
| 15 | 7, 14 | syld 45 |
. . . . . . . 8
|
| 16 | 15 | ralimdva 2597 |
. . . . . . 7
|
| 17 | 5, 16 | syld 45 |
. . . . . 6
|
| 18 | 4, 17 | anim12d 335 |
. . . . 5
|
| 19 | df-isom 5327 |
. . . . 5
| |
| 20 | df-isom 5327 |
. . . . 5
| |
| 21 | 18, 19, 20 | 3imtr4g 205 |
. . . 4
|
| 22 | 21 | impcom 125 |
. . 3
|
| 23 | isoeq5 5929 |
. . 3
| |
| 24 | 22, 23 | syl5ibrcom 157 |
. 2
|
| 25 | 24 | 3impia 1224 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |