| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfiso | Unicode version | ||
| Description: Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| nfiso.1 | 
 | 
| nfiso.2 | 
 | 
| nfiso.3 | 
 | 
| nfiso.4 | 
 | 
| nfiso.5 | 
 | 
| Ref | Expression | 
|---|---|
| nfiso | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-isom 5267 | 
. 2
 | |
| 2 | nfiso.1 | 
. . . 4
 | |
| 3 | nfiso.4 | 
. . . 4
 | |
| 4 | nfiso.5 | 
. . . 4
 | |
| 5 | 2, 3, 4 | nff1o 5502 | 
. . 3
 | 
| 6 | nfcv 2339 | 
. . . . . . 7
 | |
| 7 | nfiso.2 | 
. . . . . . 7
 | |
| 8 | nfcv 2339 | 
. . . . . . 7
 | |
| 9 | 6, 7, 8 | nfbr 4079 | 
. . . . . 6
 | 
| 10 | 2, 6 | nffv 5568 | 
. . . . . . 7
 | 
| 11 | nfiso.3 | 
. . . . . . 7
 | |
| 12 | 2, 8 | nffv 5568 | 
. . . . . . 7
 | 
| 13 | 10, 11, 12 | nfbr 4079 | 
. . . . . 6
 | 
| 14 | 9, 13 | nfbi 1603 | 
. . . . 5
 | 
| 15 | 3, 14 | nfralxy 2535 | 
. . . 4
 | 
| 16 | 3, 15 | nfralxy 2535 | 
. . 3
 | 
| 17 | 5, 16 | nfan 1579 | 
. 2
 | 
| 18 | 1, 17 | nfxfr 1488 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |