ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiso Unicode version

Theorem nfiso 5783
Description: Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
nfiso.1  |-  F/_ x H
nfiso.2  |-  F/_ x R
nfiso.3  |-  F/_ x S
nfiso.4  |-  F/_ x A
nfiso.5  |-  F/_ x B
Assertion
Ref Expression
nfiso  |-  F/ x  H  Isom  R ,  S  ( A ,  B )

Proof of Theorem nfiso
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isom 5205 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. y  e.  A  A. z  e.  A  ( y R z  <-> 
( H `  y
) S ( H `
 z ) ) ) )
2 nfiso.1 . . . 4  |-  F/_ x H
3 nfiso.4 . . . 4  |-  F/_ x A
4 nfiso.5 . . . 4  |-  F/_ x B
52, 3, 4nff1o 5438 . . 3  |-  F/ x  H : A -1-1-onto-> B
6 nfcv 2312 . . . . . . 7  |-  F/_ x
y
7 nfiso.2 . . . . . . 7  |-  F/_ x R
8 nfcv 2312 . . . . . . 7  |-  F/_ x
z
96, 7, 8nfbr 4033 . . . . . 6  |-  F/ x  y R z
102, 6nffv 5504 . . . . . . 7  |-  F/_ x
( H `  y
)
11 nfiso.3 . . . . . . 7  |-  F/_ x S
122, 8nffv 5504 . . . . . . 7  |-  F/_ x
( H `  z
)
1310, 11, 12nfbr 4033 . . . . . 6  |-  F/ x
( H `  y
) S ( H `
 z )
149, 13nfbi 1582 . . . . 5  |-  F/ x
( y R z  <-> 
( H `  y
) S ( H `
 z ) )
153, 14nfralxy 2508 . . . 4  |-  F/ x A. z  e.  A  ( y R z  <-> 
( H `  y
) S ( H `
 z ) )
163, 15nfralxy 2508 . . 3  |-  F/ x A. y  e.  A  A. z  e.  A  ( y R z  <-> 
( H `  y
) S ( H `
 z ) )
175, 16nfan 1558 . 2  |-  F/ x
( H : A -1-1-onto-> B  /\  A. y  e.  A  A. z  e.  A  ( y R z  <-> 
( H `  y
) S ( H `
 z ) ) )
181, 17nfxfr 1467 1  |-  F/ x  H  Isom  R ,  S  ( A ,  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   F/wnf 1453   F/_wnfc 2299   A.wral 2448   class class class wbr 3987   -1-1-onto->wf1o 5195   ` cfv 5196    Isom wiso 5197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator