ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff12 Unicode version

Theorem dff12 5392
Description: Alternate definition of a one-to-one function. (Contributed by NM, 31-Dec-1996.)
Assertion
Ref Expression
dff12  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. y E* x  x F y ) )
Distinct variable group:    x, y, F
Allowed substitution hints:    A( x, y)    B( x, y)

Proof of Theorem dff12
StepHypRef Expression
1 df-f1 5193 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
2 funcnv2 5248 . . 3  |-  ( Fun  `' F  <->  A. y E* x  x F y )
32anbi2i 453 . 2  |-  ( ( F : A --> B  /\  Fun  `' F )  <->  ( F : A --> B  /\  A. y E* x  x F y ) )
41, 3bitri 183 1  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. y E* x  x F y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   A.wal 1341   E*wmo 2015   class class class wbr 3982   `'ccnv 4603   Fun wfun 5182   -->wf 5184   -1-1->wf1 5185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-fun 5190  df-f1 5193
This theorem is referenced by:  dff13  5736
  Copyright terms: Public domain W3C validator