ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff12 Unicode version

Theorem dff12 5215
Description: Alternate definition of a one-to-one function. (Contributed by NM, 31-Dec-1996.)
Assertion
Ref Expression
dff12  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. y E* x  x F y ) )
Distinct variable group:    x, y, F
Allowed substitution hints:    A( x, y)    B( x, y)

Proof of Theorem dff12
StepHypRef Expression
1 df-f1 5020 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
2 funcnv2 5074 . . 3  |-  ( Fun  `' F  <->  A. y E* x  x F y )
32anbi2i 445 . 2  |-  ( ( F : A --> B  /\  Fun  `' F )  <->  ( F : A --> B  /\  A. y E* x  x F y ) )
41, 3bitri 182 1  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. y E* x  x F y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103   A.wal 1287   E*wmo 1949   class class class wbr 3845   `'ccnv 4437   Fun wfun 5009   -->wf 5011   -1-1->wf1 5012
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-fun 5017  df-f1 5020
This theorem is referenced by:  dff13  5547
  Copyright terms: Public domain W3C validator