ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnv2 Unicode version

Theorem funcnv2 5295
Description: A simpler equivalence for single-rooted (see funcnv 5296). (Contributed by NM, 9-Aug-2004.)
Assertion
Ref Expression
funcnv2  |-  ( Fun  `' A  <->  A. y E* x  x A y )
Distinct variable group:    x, y, A

Proof of Theorem funcnv2
StepHypRef Expression
1 relcnv 5024 . . 3  |-  Rel  `' A
2 dffun6 5249 . . 3  |-  ( Fun  `' A  <->  ( Rel  `' A  /\  A. y E* x  y `' A x ) )
31, 2mpbiran 942 . 2  |-  ( Fun  `' A  <->  A. y E* x  y `' A x )
4 vex 2755 . . . . 5  |-  y  e. 
_V
5 vex 2755 . . . . 5  |-  x  e. 
_V
64, 5brcnv 4828 . . . 4  |-  ( y `' A x  <->  x A
y )
76mobii 2075 . . 3  |-  ( E* x  y `' A x 
<->  E* x  x A y )
87albii 1481 . 2  |-  ( A. y E* x  y `' A x  <->  A. y E* x  x A
y )
93, 8bitri 184 1  |-  ( Fun  `' A  <->  A. y E* x  x A y )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362   E*wmo 2039   class class class wbr 4018   `'ccnv 4643   Rel wrel 4649   Fun wfun 5229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-fun 5237
This theorem is referenced by:  funcnv  5296  fun2cnv  5299  fun11  5302  dff12  5439  1stconst  6247  2ndconst  6248
  Copyright terms: Public domain W3C validator