ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff12 GIF version

Theorem dff12 5526
Description: Alternate definition of a one-to-one function. (Contributed by NM, 31-Dec-1996.)
Assertion
Ref Expression
dff12 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦))
Distinct variable group:   𝑥,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem dff12
StepHypRef Expression
1 df-f1 5319 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
2 funcnv2 5377 . . 3 (Fun 𝐹 ↔ ∀𝑦∃*𝑥 𝑥𝐹𝑦)
32anbi2i 457 . 2 ((𝐹:𝐴𝐵 ∧ Fun 𝐹) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦))
41, 3bitri 184 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1393  ∃*wmo 2078   class class class wbr 4082  ccnv 4715  Fun wfun 5308  wf 5310  1-1wf1 5311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-fun 5316  df-f1 5319
This theorem is referenced by:  dff13  5885
  Copyright terms: Public domain W3C validator