Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dff12 | GIF version |
Description: Alternate definition of a one-to-one function. (Contributed by NM, 31-Dec-1996.) |
Ref | Expression |
---|---|
dff12 | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1 5203 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
2 | funcnv2 5258 | . . 3 ⊢ (Fun ◡𝐹 ↔ ∀𝑦∃*𝑥 𝑥𝐹𝑦) | |
3 | 2 | anbi2i 454 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦)) |
4 | 1, 3 | bitri 183 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∀wal 1346 ∃*wmo 2020 class class class wbr 3989 ◡ccnv 4610 Fun wfun 5192 ⟶wf 5194 –1-1→wf1 5195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-fun 5200 df-f1 5203 |
This theorem is referenced by: dff13 5747 |
Copyright terms: Public domain | W3C validator |