![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dff12 | GIF version |
Description: Alternate definition of a one-to-one function. (Contributed by NM, 31-Dec-1996.) |
Ref | Expression |
---|---|
dff12 | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1 5251 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
2 | funcnv2 5306 | . . 3 ⊢ (Fun ◡𝐹 ↔ ∀𝑦∃*𝑥 𝑥𝐹𝑦) | |
3 | 2 | anbi2i 457 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦)) |
4 | 1, 3 | bitri 184 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃*wmo 2043 class class class wbr 4029 ◡ccnv 4654 Fun wfun 5240 ⟶wf 5242 –1-1→wf1 5243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-id 4322 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-fun 5248 df-f1 5251 |
This theorem is referenced by: dff13 5803 |
Copyright terms: Public domain | W3C validator |