| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frec2uzf1od | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| frec2uz.1 |
|
| frec2uz.2 |
|
| Ref | Expression |
|---|---|
| frec2uzf1od |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zex 9381 |
. . . . . . . . 9
| |
| 2 | 1 | mptex 5810 |
. . . . . . . 8
|
| 3 | vex 2775 |
. . . . . . . 8
| |
| 4 | 2, 3 | fvex 5596 |
. . . . . . 7
|
| 5 | 4 | ax-gen 1472 |
. . . . . 6
|
| 6 | frec2uz.1 |
. . . . . 6
| |
| 7 | frecfnom 6487 |
. . . . . 6
| |
| 8 | 5, 6, 7 | sylancr 414 |
. . . . 5
|
| 9 | frec2uz.2 |
. . . . . 6
| |
| 10 | 9 | fneq1i 5368 |
. . . . 5
|
| 11 | 8, 10 | sylibr 134 |
. . . 4
|
| 12 | 6, 9 | frec2uzrand 10550 |
. . . . 5
|
| 13 | eqimss 3247 |
. . . . 5
| |
| 14 | 12, 13 | syl 14 |
. . . 4
|
| 15 | df-f 5275 |
. . . 4
| |
| 16 | 11, 14, 15 | sylanbrc 417 |
. . 3
|
| 17 | 6 | adantr 276 |
. . . . . . . . . . . . . 14
|
| 18 | simpr 110 |
. . . . . . . . . . . . . 14
| |
| 19 | 17, 9, 18 | frec2uzzd 10545 |
. . . . . . . . . . . . 13
|
| 20 | 19 | 3adant3 1020 |
. . . . . . . . . . . 12
|
| 21 | 20 | zred 9495 |
. . . . . . . . . . 11
|
| 22 | 21 | ltnrd 8184 |
. . . . . . . . . 10
|
| 23 | 22 | adantr 276 |
. . . . . . . . 9
|
| 24 | simpr 110 |
. . . . . . . . . 10
| |
| 25 | 24 | breq2d 4056 |
. . . . . . . . 9
|
| 26 | 23, 25 | mtbid 674 |
. . . . . . . 8
|
| 27 | 17 | 3adant3 1020 |
. . . . . . . . . . 11
|
| 28 | simp2 1001 |
. . . . . . . . . . 11
| |
| 29 | simp3 1002 |
. . . . . . . . . . 11
| |
| 30 | 27, 9, 28, 29 | frec2uzltd 10548 |
. . . . . . . . . 10
|
| 31 | 30 | con3d 632 |
. . . . . . . . 9
|
| 32 | 31 | adantr 276 |
. . . . . . . 8
|
| 33 | 26, 32 | mpd 13 |
. . . . . . 7
|
| 34 | 24 | breq1d 4054 |
. . . . . . . . 9
|
| 35 | 23, 34 | mtbid 674 |
. . . . . . . 8
|
| 36 | 27, 9, 29, 28 | frec2uzltd 10548 |
. . . . . . . . 9
|
| 37 | 36 | adantr 276 |
. . . . . . . 8
|
| 38 | 35, 37 | mtod 665 |
. . . . . . 7
|
| 39 | nntri3 6583 |
. . . . . . . . 9
| |
| 40 | 39 | 3adant1 1018 |
. . . . . . . 8
|
| 41 | 40 | adantr 276 |
. . . . . . 7
|
| 42 | 33, 38, 41 | mpbir2and 947 |
. . . . . 6
|
| 43 | 42 | ex 115 |
. . . . 5
|
| 44 | 43 | 3expb 1207 |
. . . 4
|
| 45 | 44 | ralrimivva 2588 |
. . 3
|
| 46 | dff13 5837 |
. . 3
| |
| 47 | 16, 45, 46 | sylanbrc 417 |
. 2
|
| 48 | dff1o5 5531 |
. 2
| |
| 49 | 47, 12, 48 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-recs 6391 df-frec 6477 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 |
| This theorem is referenced by: frec2uzisod 10552 frecuzrdglem 10556 frecuzrdgtcl 10557 frecuzrdgsuc 10559 frecuzrdgg 10561 frecuzrdgdomlem 10562 frecuzrdgfunlem 10564 frecuzrdgsuctlem 10568 uzenom 10570 frecfzennn 10571 frechashgf1o 10573 frec2uzled 10574 hashfz1 10928 hashen 10929 nninfctlemfo 12361 ennnfonelemjn 12773 ennnfonelem1 12778 ennnfonelemhf1o 12784 ennnfonelemrn 12790 ssnnctlemct 12817 |
| Copyright terms: Public domain | W3C validator |