ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzf1od Unicode version

Theorem frec2uzf1od 10420
Description:  G (see frec2uz0d 10413) is a one-to-one onto mapping. (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frec2uzf1od  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
Distinct variable groups:    x, C    ph, x
Allowed substitution hint:    G( x)

Proof of Theorem frec2uzf1od
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 9276 . . . . . . . . 9  |-  ZZ  e.  _V
21mptex 5755 . . . . . . . 8  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  e.  _V
3 vex 2752 . . . . . . . 8  |-  z  e. 
_V
42, 3fvex 5547 . . . . . . 7  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V
54ax-gen 1459 . . . . . 6  |-  A. z
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  z )  e.  _V
6 frec2uz.1 . . . . . 6  |-  ( ph  ->  C  e.  ZZ )
7 frecfnom 6416 . . . . . 6  |-  ( ( A. z ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V  /\  C  e.  ZZ )  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
85, 6, 7sylancr 414 . . . . 5  |-  ( ph  -> frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )  Fn  om )
9 frec2uz.2 . . . . . 6  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
109fneq1i 5322 . . . . 5  |-  ( G  Fn  om  <-> frec ( (
x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
118, 10sylibr 134 . . . 4  |-  ( ph  ->  G  Fn  om )
126, 9frec2uzrand 10419 . . . . 5  |-  ( ph  ->  ran  G  =  (
ZZ>= `  C ) )
13 eqimss 3221 . . . . 5  |-  ( ran 
G  =  ( ZZ>= `  C )  ->  ran  G 
C_  ( ZZ>= `  C
) )
1412, 13syl 14 . . . 4  |-  ( ph  ->  ran  G  C_  ( ZZ>=
`  C ) )
15 df-f 5232 . . . 4  |-  ( G : om --> ( ZZ>= `  C )  <->  ( G  Fn  om  /\  ran  G  C_  ( ZZ>= `  C )
) )
1611, 14, 15sylanbrc 417 . . 3  |-  ( ph  ->  G : om --> ( ZZ>= `  C ) )
176adantr 276 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  om )  ->  C  e.  ZZ )
18 simpr 110 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  om )  ->  y  e.  om )
1917, 9, 18frec2uzzd 10414 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  om )  ->  ( G `  y )  e.  ZZ )
20193adant3 1018 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( G `  y )  e.  ZZ )
2120zred 9389 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( G `  y )  e.  RR )
2221ltnrd 8083 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  -.  ( G `  y )  <  ( G `  y )
)
2322adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  ( G `  y
)  <  ( G `  y ) )
24 simpr 110 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( G `  y
)  =  ( G `
 z ) )
2524breq2d 4027 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( ( G `  y )  <  ( G `  y )  <->  ( G `  y )  <  ( G `  z ) ) )
2623, 25mtbid 673 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  ( G `  y
)  <  ( G `  z ) )
27173adant3 1018 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  C  e.  ZZ )
28 simp2 999 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  y  e.  om )
29 simp3 1000 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  z  e.  om )
3027, 9, 28, 29frec2uzltd 10417 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( y  e.  z  ->  ( G `  y )  <  ( G `  z )
) )
3130con3d 632 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( -.  ( G `  y )  <  ( G `  z
)  ->  -.  y  e.  z ) )
3231adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( -.  ( G `
 y )  < 
( G `  z
)  ->  -.  y  e.  z ) )
3326, 32mpd 13 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  y  e.  z
)
3424breq1d 4025 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( ( G `  y )  <  ( G `  y )  <->  ( G `  z )  <  ( G `  y ) ) )
3523, 34mtbid 673 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  ( G `  z
)  <  ( G `  y ) )
3627, 9, 29, 28frec2uzltd 10417 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( z  e.  y  ->  ( G `  z )  <  ( G `  y )
) )
3736adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( z  e.  y  ->  ( G `  z )  <  ( G `  y )
) )
3835, 37mtod 664 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  z  e.  y
)
39 nntri3 6512 . . . . . . . . 9  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( y  =  z  <-> 
( -.  y  e.  z  /\  -.  z  e.  y ) ) )
40393adant1 1016 . . . . . . . 8  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( y  =  z  <->  ( -.  y  e.  z  /\  -.  z  e.  y ) ) )
4140adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( y  =  z  <-> 
( -.  y  e.  z  /\  -.  z  e.  y ) ) )
4233, 38, 41mpbir2and 945 . . . . . 6  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
y  =  z )
4342ex 115 . . . . 5  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( ( G `
 y )  =  ( G `  z
)  ->  y  =  z ) )
44433expb 1205 . . . 4  |-  ( (
ph  /\  ( y  e.  om  /\  z  e. 
om ) )  -> 
( ( G `  y )  =  ( G `  z )  ->  y  =  z ) )
4544ralrimivva 2569 . . 3  |-  ( ph  ->  A. y  e.  om  A. z  e.  om  (
( G `  y
)  =  ( G `
 z )  -> 
y  =  z ) )
46 dff13 5782 . . 3  |-  ( G : om -1-1-> ( ZZ>= `  C )  <->  ( G : om --> ( ZZ>= `  C
)  /\  A. y  e.  om  A. z  e. 
om  ( ( G `
 y )  =  ( G `  z
)  ->  y  =  z ) ) )
4716, 45, 46sylanbrc 417 . 2  |-  ( ph  ->  G : om -1-1-> (
ZZ>= `  C ) )
48 dff1o5 5482 . 2  |-  ( G : om -1-1-onto-> ( ZZ>= `  C )  <->  ( G : om -1-1-> (
ZZ>= `  C )  /\  ran  G  =  ( ZZ>= `  C ) ) )
4947, 12, 48sylanbrc 417 1  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979   A.wal 1361    = wceq 1363    e. wcel 2158   A.wral 2465   _Vcvv 2749    C_ wss 3141   class class class wbr 4015    |-> cmpt 4076   omcom 4601   ran crn 4639    Fn wfn 5223   -->wf 5224   -1-1->wf1 5225   -1-1-onto->wf1o 5227   ` cfv 5228  (class class class)co 5888  freccfrec 6405   1c1 7826    + caddc 7828    < clt 8006   ZZcz 9267   ZZ>=cuz 9542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-recs 6320  df-frec 6406  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-inn 8934  df-n0 9191  df-z 9268  df-uz 9543
This theorem is referenced by:  frec2uzisod  10421  frecuzrdglem  10425  frecuzrdgtcl  10426  frecuzrdgsuc  10428  frecuzrdgg  10430  frecuzrdgdomlem  10431  frecuzrdgfunlem  10433  frecuzrdgsuctlem  10437  uzenom  10439  frecfzennn  10440  frechashgf1o  10442  frec2uzled  10443  hashfz1  10777  hashen  10778  ennnfonelemjn  12417  ennnfonelem1  12422  ennnfonelemhf1o  12428  ennnfonelemrn  12434  ssnnctlemct  12461
  Copyright terms: Public domain W3C validator