ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzf1od Unicode version

Theorem frec2uzf1od 10480
Description:  G (see frec2uz0d 10473) is a one-to-one onto mapping. (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frec2uzf1od  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
Distinct variable groups:    x, C    ph, x
Allowed substitution hint:    G( x)

Proof of Theorem frec2uzf1od
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 9329 . . . . . . . . 9  |-  ZZ  e.  _V
21mptex 5785 . . . . . . . 8  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  e.  _V
3 vex 2763 . . . . . . . 8  |-  z  e. 
_V
42, 3fvex 5575 . . . . . . 7  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V
54ax-gen 1460 . . . . . 6  |-  A. z
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  z )  e.  _V
6 frec2uz.1 . . . . . 6  |-  ( ph  ->  C  e.  ZZ )
7 frecfnom 6456 . . . . . 6  |-  ( ( A. z ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V  /\  C  e.  ZZ )  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
85, 6, 7sylancr 414 . . . . 5  |-  ( ph  -> frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )  Fn  om )
9 frec2uz.2 . . . . . 6  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
109fneq1i 5349 . . . . 5  |-  ( G  Fn  om  <-> frec ( (
x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
118, 10sylibr 134 . . . 4  |-  ( ph  ->  G  Fn  om )
126, 9frec2uzrand 10479 . . . . 5  |-  ( ph  ->  ran  G  =  (
ZZ>= `  C ) )
13 eqimss 3234 . . . . 5  |-  ( ran 
G  =  ( ZZ>= `  C )  ->  ran  G 
C_  ( ZZ>= `  C
) )
1412, 13syl 14 . . . 4  |-  ( ph  ->  ran  G  C_  ( ZZ>=
`  C ) )
15 df-f 5259 . . . 4  |-  ( G : om --> ( ZZ>= `  C )  <->  ( G  Fn  om  /\  ran  G  C_  ( ZZ>= `  C )
) )
1611, 14, 15sylanbrc 417 . . 3  |-  ( ph  ->  G : om --> ( ZZ>= `  C ) )
176adantr 276 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  om )  ->  C  e.  ZZ )
18 simpr 110 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  om )  ->  y  e.  om )
1917, 9, 18frec2uzzd 10474 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  om )  ->  ( G `  y )  e.  ZZ )
20193adant3 1019 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( G `  y )  e.  ZZ )
2120zred 9442 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( G `  y )  e.  RR )
2221ltnrd 8133 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  -.  ( G `  y )  <  ( G `  y )
)
2322adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  ( G `  y
)  <  ( G `  y ) )
24 simpr 110 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( G `  y
)  =  ( G `
 z ) )
2524breq2d 4042 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( ( G `  y )  <  ( G `  y )  <->  ( G `  y )  <  ( G `  z ) ) )
2623, 25mtbid 673 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  ( G `  y
)  <  ( G `  z ) )
27173adant3 1019 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  C  e.  ZZ )
28 simp2 1000 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  y  e.  om )
29 simp3 1001 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  z  e.  om )
3027, 9, 28, 29frec2uzltd 10477 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( y  e.  z  ->  ( G `  y )  <  ( G `  z )
) )
3130con3d 632 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( -.  ( G `  y )  <  ( G `  z
)  ->  -.  y  e.  z ) )
3231adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( -.  ( G `
 y )  < 
( G `  z
)  ->  -.  y  e.  z ) )
3326, 32mpd 13 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  y  e.  z
)
3424breq1d 4040 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( ( G `  y )  <  ( G `  y )  <->  ( G `  z )  <  ( G `  y ) ) )
3523, 34mtbid 673 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  ( G `  z
)  <  ( G `  y ) )
3627, 9, 29, 28frec2uzltd 10477 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( z  e.  y  ->  ( G `  z )  <  ( G `  y )
) )
3736adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( z  e.  y  ->  ( G `  z )  <  ( G `  y )
) )
3835, 37mtod 664 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  z  e.  y
)
39 nntri3 6552 . . . . . . . . 9  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( y  =  z  <-> 
( -.  y  e.  z  /\  -.  z  e.  y ) ) )
40393adant1 1017 . . . . . . . 8  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( y  =  z  <->  ( -.  y  e.  z  /\  -.  z  e.  y ) ) )
4140adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( y  =  z  <-> 
( -.  y  e.  z  /\  -.  z  e.  y ) ) )
4233, 38, 41mpbir2and 946 . . . . . 6  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
y  =  z )
4342ex 115 . . . . 5  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( ( G `
 y )  =  ( G `  z
)  ->  y  =  z ) )
44433expb 1206 . . . 4  |-  ( (
ph  /\  ( y  e.  om  /\  z  e. 
om ) )  -> 
( ( G `  y )  =  ( G `  z )  ->  y  =  z ) )
4544ralrimivva 2576 . . 3  |-  ( ph  ->  A. y  e.  om  A. z  e.  om  (
( G `  y
)  =  ( G `
 z )  -> 
y  =  z ) )
46 dff13 5812 . . 3  |-  ( G : om -1-1-> ( ZZ>= `  C )  <->  ( G : om --> ( ZZ>= `  C
)  /\  A. y  e.  om  A. z  e. 
om  ( ( G `
 y )  =  ( G `  z
)  ->  y  =  z ) ) )
4716, 45, 46sylanbrc 417 . 2  |-  ( ph  ->  G : om -1-1-> (
ZZ>= `  C ) )
48 dff1o5 5510 . 2  |-  ( G : om -1-1-onto-> ( ZZ>= `  C )  <->  ( G : om -1-1-> (
ZZ>= `  C )  /\  ran  G  =  ( ZZ>= `  C ) ) )
4947, 12, 48sylanbrc 417 1  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980   A.wal 1362    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760    C_ wss 3154   class class class wbr 4030    |-> cmpt 4091   omcom 4623   ran crn 4661    Fn wfn 5250   -->wf 5251   -1-1->wf1 5252   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919  freccfrec 6445   1c1 7875    + caddc 7877    < clt 8056   ZZcz 9320   ZZ>=cuz 9595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596
This theorem is referenced by:  frec2uzisod  10481  frecuzrdglem  10485  frecuzrdgtcl  10486  frecuzrdgsuc  10488  frecuzrdgg  10490  frecuzrdgdomlem  10491  frecuzrdgfunlem  10493  frecuzrdgsuctlem  10497  uzenom  10499  frecfzennn  10500  frechashgf1o  10502  frec2uzled  10503  hashfz1  10857  hashen  10858  nninfctlemfo  12180  ennnfonelemjn  12562  ennnfonelem1  12567  ennnfonelemhf1o  12573  ennnfonelemrn  12579  ssnnctlemct  12606
  Copyright terms: Public domain W3C validator