ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzf1od Unicode version

Theorem frec2uzf1od 10179
Description:  G (see frec2uz0d 10172) is a one-to-one onto mapping. (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frec2uzf1od  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
Distinct variable groups:    x, C    ph, x
Allowed substitution hint:    G( x)

Proof of Theorem frec2uzf1od
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 9063 . . . . . . . . 9  |-  ZZ  e.  _V
21mptex 5646 . . . . . . . 8  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  e.  _V
3 vex 2689 . . . . . . . 8  |-  z  e. 
_V
42, 3fvex 5441 . . . . . . 7  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V
54ax-gen 1425 . . . . . 6  |-  A. z
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  z )  e.  _V
6 frec2uz.1 . . . . . 6  |-  ( ph  ->  C  e.  ZZ )
7 frecfnom 6298 . . . . . 6  |-  ( ( A. z ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V  /\  C  e.  ZZ )  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
85, 6, 7sylancr 410 . . . . 5  |-  ( ph  -> frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )  Fn  om )
9 frec2uz.2 . . . . . 6  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
109fneq1i 5217 . . . . 5  |-  ( G  Fn  om  <-> frec ( (
x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
118, 10sylibr 133 . . . 4  |-  ( ph  ->  G  Fn  om )
126, 9frec2uzrand 10178 . . . . 5  |-  ( ph  ->  ran  G  =  (
ZZ>= `  C ) )
13 eqimss 3151 . . . . 5  |-  ( ran 
G  =  ( ZZ>= `  C )  ->  ran  G 
C_  ( ZZ>= `  C
) )
1412, 13syl 14 . . . 4  |-  ( ph  ->  ran  G  C_  ( ZZ>=
`  C ) )
15 df-f 5127 . . . 4  |-  ( G : om --> ( ZZ>= `  C )  <->  ( G  Fn  om  /\  ran  G  C_  ( ZZ>= `  C )
) )
1611, 14, 15sylanbrc 413 . . 3  |-  ( ph  ->  G : om --> ( ZZ>= `  C ) )
176adantr 274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  om )  ->  C  e.  ZZ )
18 simpr 109 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  om )  ->  y  e.  om )
1917, 9, 18frec2uzzd 10173 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  om )  ->  ( G `  y )  e.  ZZ )
20193adant3 1001 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( G `  y )  e.  ZZ )
2120zred 9173 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( G `  y )  e.  RR )
2221ltnrd 7875 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  -.  ( G `  y )  <  ( G `  y )
)
2322adantr 274 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  ( G `  y
)  <  ( G `  y ) )
24 simpr 109 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( G `  y
)  =  ( G `
 z ) )
2524breq2d 3941 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( ( G `  y )  <  ( G `  y )  <->  ( G `  y )  <  ( G `  z ) ) )
2623, 25mtbid 661 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  ( G `  y
)  <  ( G `  z ) )
27173adant3 1001 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  C  e.  ZZ )
28 simp2 982 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  y  e.  om )
29 simp3 983 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  z  e.  om )
3027, 9, 28, 29frec2uzltd 10176 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( y  e.  z  ->  ( G `  y )  <  ( G `  z )
) )
3130con3d 620 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( -.  ( G `  y )  <  ( G `  z
)  ->  -.  y  e.  z ) )
3231adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( -.  ( G `
 y )  < 
( G `  z
)  ->  -.  y  e.  z ) )
3326, 32mpd 13 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  y  e.  z
)
3424breq1d 3939 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( ( G `  y )  <  ( G `  y )  <->  ( G `  z )  <  ( G `  y ) ) )
3523, 34mtbid 661 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  ( G `  z
)  <  ( G `  y ) )
3627, 9, 29, 28frec2uzltd 10176 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( z  e.  y  ->  ( G `  z )  <  ( G `  y )
) )
3736adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( z  e.  y  ->  ( G `  z )  <  ( G `  y )
) )
3835, 37mtod 652 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  z  e.  y
)
39 nntri3 6393 . . . . . . . . 9  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( y  =  z  <-> 
( -.  y  e.  z  /\  -.  z  e.  y ) ) )
40393adant1 999 . . . . . . . 8  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( y  =  z  <->  ( -.  y  e.  z  /\  -.  z  e.  y ) ) )
4140adantr 274 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( y  =  z  <-> 
( -.  y  e.  z  /\  -.  z  e.  y ) ) )
4233, 38, 41mpbir2and 928 . . . . . 6  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
y  =  z )
4342ex 114 . . . . 5  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( ( G `
 y )  =  ( G `  z
)  ->  y  =  z ) )
44433expb 1182 . . . 4  |-  ( (
ph  /\  ( y  e.  om  /\  z  e. 
om ) )  -> 
( ( G `  y )  =  ( G `  z )  ->  y  =  z ) )
4544ralrimivva 2514 . . 3  |-  ( ph  ->  A. y  e.  om  A. z  e.  om  (
( G `  y
)  =  ( G `
 z )  -> 
y  =  z ) )
46 dff13 5669 . . 3  |-  ( G : om -1-1-> ( ZZ>= `  C )  <->  ( G : om --> ( ZZ>= `  C
)  /\  A. y  e.  om  A. z  e. 
om  ( ( G `
 y )  =  ( G `  z
)  ->  y  =  z ) ) )
4716, 45, 46sylanbrc 413 . 2  |-  ( ph  ->  G : om -1-1-> (
ZZ>= `  C ) )
48 dff1o5 5376 . 2  |-  ( G : om -1-1-onto-> ( ZZ>= `  C )  <->  ( G : om -1-1-> (
ZZ>= `  C )  /\  ran  G  =  ( ZZ>= `  C ) ) )
4947, 12, 48sylanbrc 413 1  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962   A.wal 1329    = wceq 1331    e. wcel 1480   A.wral 2416   _Vcvv 2686    C_ wss 3071   class class class wbr 3929    |-> cmpt 3989   omcom 4504   ran crn 4540    Fn wfn 5118   -->wf 5119   -1-1->wf1 5120   -1-1-onto->wf1o 5122   ` cfv 5123  (class class class)co 5774  freccfrec 6287   1c1 7621    + caddc 7623    < clt 7800   ZZcz 9054   ZZ>=cuz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327
This theorem is referenced by:  frec2uzisod  10180  frecuzrdglem  10184  frecuzrdgtcl  10185  frecuzrdgsuc  10187  frecuzrdgg  10189  frecuzrdgdomlem  10190  frecuzrdgfunlem  10192  frecuzrdgsuctlem  10196  uzenom  10198  frecfzennn  10199  frechashgf1o  10201  frec2uzled  10202  hashfz1  10529  hashen  10530  ennnfonelemjn  11915  ennnfonelem1  11920  ennnfonelemhf1o  11926  ennnfonelemrn  11932
  Copyright terms: Public domain W3C validator