ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzf1od Unicode version

Theorem frec2uzf1od 9809
Description:  G (see frec2uz0d 9802) is a one-to-one onto mapping. (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frec2uzf1od  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
Distinct variable groups:    x, C    ph, x
Allowed substitution hint:    G( x)

Proof of Theorem frec2uzf1od
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 8757 . . . . . . . . 9  |-  ZZ  e.  _V
21mptex 5523 . . . . . . . 8  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  e.  _V
3 vex 2622 . . . . . . . 8  |-  z  e. 
_V
42, 3fvex 5325 . . . . . . 7  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V
54ax-gen 1383 . . . . . 6  |-  A. z
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  z )  e.  _V
6 frec2uz.1 . . . . . 6  |-  ( ph  ->  C  e.  ZZ )
7 frecfnom 6166 . . . . . 6  |-  ( ( A. z ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V  /\  C  e.  ZZ )  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
85, 6, 7sylancr 405 . . . . 5  |-  ( ph  -> frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )  Fn  om )
9 frec2uz.2 . . . . . 6  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
109fneq1i 5108 . . . . 5  |-  ( G  Fn  om  <-> frec ( (
x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
118, 10sylibr 132 . . . 4  |-  ( ph  ->  G  Fn  om )
126, 9frec2uzrand 9808 . . . . 5  |-  ( ph  ->  ran  G  =  (
ZZ>= `  C ) )
13 eqimss 3078 . . . . 5  |-  ( ran 
G  =  ( ZZ>= `  C )  ->  ran  G 
C_  ( ZZ>= `  C
) )
1412, 13syl 14 . . . 4  |-  ( ph  ->  ran  G  C_  ( ZZ>=
`  C ) )
15 df-f 5019 . . . 4  |-  ( G : om --> ( ZZ>= `  C )  <->  ( G  Fn  om  /\  ran  G  C_  ( ZZ>= `  C )
) )
1611, 14, 15sylanbrc 408 . . 3  |-  ( ph  ->  G : om --> ( ZZ>= `  C ) )
176adantr 270 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  om )  ->  C  e.  ZZ )
18 simpr 108 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  om )  ->  y  e.  om )
1917, 9, 18frec2uzzd 9803 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  om )  ->  ( G `  y )  e.  ZZ )
20193adant3 963 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( G `  y )  e.  ZZ )
2120zred 8866 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( G `  y )  e.  RR )
2221ltnrd 7594 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  -.  ( G `  y )  <  ( G `  y )
)
2322adantr 270 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  ( G `  y
)  <  ( G `  y ) )
24 simpr 108 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( G `  y
)  =  ( G `
 z ) )
2524breq2d 3857 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( ( G `  y )  <  ( G `  y )  <->  ( G `  y )  <  ( G `  z ) ) )
2623, 25mtbid 632 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  ( G `  y
)  <  ( G `  z ) )
27173adant3 963 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  C  e.  ZZ )
28 simp2 944 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  y  e.  om )
29 simp3 945 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  z  e.  om )
3027, 9, 28, 29frec2uzltd 9806 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( y  e.  z  ->  ( G `  y )  <  ( G `  z )
) )
3130con3d 596 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( -.  ( G `  y )  <  ( G `  z
)  ->  -.  y  e.  z ) )
3231adantr 270 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( -.  ( G `
 y )  < 
( G `  z
)  ->  -.  y  e.  z ) )
3326, 32mpd 13 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  y  e.  z
)
3424breq1d 3855 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( ( G `  y )  <  ( G `  y )  <->  ( G `  z )  <  ( G `  y ) ) )
3523, 34mtbid 632 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  ( G `  z
)  <  ( G `  y ) )
3627, 9, 29, 28frec2uzltd 9806 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( z  e.  y  ->  ( G `  z )  <  ( G `  y )
) )
3736adantr 270 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( z  e.  y  ->  ( G `  z )  <  ( G `  y )
) )
3835, 37mtod 624 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  z  e.  y
)
39 nntri3 6258 . . . . . . . . 9  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( y  =  z  <-> 
( -.  y  e.  z  /\  -.  z  e.  y ) ) )
40393adant1 961 . . . . . . . 8  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( y  =  z  <->  ( -.  y  e.  z  /\  -.  z  e.  y ) ) )
4140adantr 270 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( y  =  z  <-> 
( -.  y  e.  z  /\  -.  z  e.  y ) ) )
4233, 38, 41mpbir2and 890 . . . . . 6  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
y  =  z )
4342ex 113 . . . . 5  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( ( G `
 y )  =  ( G `  z
)  ->  y  =  z ) )
44433expb 1144 . . . 4  |-  ( (
ph  /\  ( y  e.  om  /\  z  e. 
om ) )  -> 
( ( G `  y )  =  ( G `  z )  ->  y  =  z ) )
4544ralrimivva 2455 . . 3  |-  ( ph  ->  A. y  e.  om  A. z  e.  om  (
( G `  y
)  =  ( G `
 z )  -> 
y  =  z ) )
46 dff13 5547 . . 3  |-  ( G : om -1-1-> ( ZZ>= `  C )  <->  ( G : om --> ( ZZ>= `  C
)  /\  A. y  e.  om  A. z  e. 
om  ( ( G `
 y )  =  ( G `  z
)  ->  y  =  z ) ) )
4716, 45, 46sylanbrc 408 . 2  |-  ( ph  ->  G : om -1-1-> (
ZZ>= `  C ) )
48 dff1o5 5262 . 2  |-  ( G : om -1-1-onto-> ( ZZ>= `  C )  <->  ( G : om -1-1-> (
ZZ>= `  C )  /\  ran  G  =  ( ZZ>= `  C ) ) )
4947, 12, 48sylanbrc 408 1  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924   A.wal 1287    = wceq 1289    e. wcel 1438   A.wral 2359   _Vcvv 2619    C_ wss 2999   class class class wbr 3845    |-> cmpt 3899   omcom 4405   ran crn 4439    Fn wfn 5010   -->wf 5011   -1-1->wf1 5012   -1-1-onto->wf1o 5014   ` cfv 5015  (class class class)co 5652  freccfrec 6155   1c1 7349    + caddc 7351    < clt 7520   ZZcz 8748   ZZ>=cuz 9017
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-addass 7445  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-0id 7451  ax-rnegex 7452  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-ltadd 7459
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-recs 6070  df-frec 6156  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-inn 8421  df-n0 8672  df-z 8749  df-uz 9018
This theorem is referenced by:  frec2uzisod  9810  frecuzrdglem  9814  frecuzrdgtcl  9815  frecuzrdgsuc  9817  frecuzrdgg  9819  frecuzrdgdomlem  9820  frecuzrdgfunlem  9822  frecuzrdgsuctlem  9826  uzenom  9828  frecfzennn  9829  frechashgf1o  9831  frec2uzled  9832  hashfz1  10187  hashen  10188
  Copyright terms: Public domain W3C validator