| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frec2uzf1od | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| frec2uz.1 |
|
| frec2uz.2 |
|
| Ref | Expression |
|---|---|
| frec2uzf1od |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zex 9451 |
. . . . . . . . 9
| |
| 2 | 1 | mptex 5864 |
. . . . . . . 8
|
| 3 | vex 2802 |
. . . . . . . 8
| |
| 4 | 2, 3 | fvex 5646 |
. . . . . . 7
|
| 5 | 4 | ax-gen 1495 |
. . . . . 6
|
| 6 | frec2uz.1 |
. . . . . 6
| |
| 7 | frecfnom 6545 |
. . . . . 6
| |
| 8 | 5, 6, 7 | sylancr 414 |
. . . . 5
|
| 9 | frec2uz.2 |
. . . . . 6
| |
| 10 | 9 | fneq1i 5414 |
. . . . 5
|
| 11 | 8, 10 | sylibr 134 |
. . . 4
|
| 12 | 6, 9 | frec2uzrand 10622 |
. . . . 5
|
| 13 | eqimss 3278 |
. . . . 5
| |
| 14 | 12, 13 | syl 14 |
. . . 4
|
| 15 | df-f 5321 |
. . . 4
| |
| 16 | 11, 14, 15 | sylanbrc 417 |
. . 3
|
| 17 | 6 | adantr 276 |
. . . . . . . . . . . . . 14
|
| 18 | simpr 110 |
. . . . . . . . . . . . . 14
| |
| 19 | 17, 9, 18 | frec2uzzd 10617 |
. . . . . . . . . . . . 13
|
| 20 | 19 | 3adant3 1041 |
. . . . . . . . . . . 12
|
| 21 | 20 | zred 9565 |
. . . . . . . . . . 11
|
| 22 | 21 | ltnrd 8254 |
. . . . . . . . . 10
|
| 23 | 22 | adantr 276 |
. . . . . . . . 9
|
| 24 | simpr 110 |
. . . . . . . . . 10
| |
| 25 | 24 | breq2d 4094 |
. . . . . . . . 9
|
| 26 | 23, 25 | mtbid 676 |
. . . . . . . 8
|
| 27 | 17 | 3adant3 1041 |
. . . . . . . . . . 11
|
| 28 | simp2 1022 |
. . . . . . . . . . 11
| |
| 29 | simp3 1023 |
. . . . . . . . . . 11
| |
| 30 | 27, 9, 28, 29 | frec2uzltd 10620 |
. . . . . . . . . 10
|
| 31 | 30 | con3d 634 |
. . . . . . . . 9
|
| 32 | 31 | adantr 276 |
. . . . . . . 8
|
| 33 | 26, 32 | mpd 13 |
. . . . . . 7
|
| 34 | 24 | breq1d 4092 |
. . . . . . . . 9
|
| 35 | 23, 34 | mtbid 676 |
. . . . . . . 8
|
| 36 | 27, 9, 29, 28 | frec2uzltd 10620 |
. . . . . . . . 9
|
| 37 | 36 | adantr 276 |
. . . . . . . 8
|
| 38 | 35, 37 | mtod 667 |
. . . . . . 7
|
| 39 | nntri3 6641 |
. . . . . . . . 9
| |
| 40 | 39 | 3adant1 1039 |
. . . . . . . 8
|
| 41 | 40 | adantr 276 |
. . . . . . 7
|
| 42 | 33, 38, 41 | mpbir2and 950 |
. . . . . 6
|
| 43 | 42 | ex 115 |
. . . . 5
|
| 44 | 43 | 3expb 1228 |
. . . 4
|
| 45 | 44 | ralrimivva 2612 |
. . 3
|
| 46 | dff13 5891 |
. . 3
| |
| 47 | 16, 45, 46 | sylanbrc 417 |
. 2
|
| 48 | dff1o5 5580 |
. 2
| |
| 49 | 47, 12, 48 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 |
| This theorem is referenced by: frec2uzisod 10624 frecuzrdglem 10628 frecuzrdgtcl 10629 frecuzrdgsuc 10631 frecuzrdgg 10633 frecuzrdgdomlem 10634 frecuzrdgfunlem 10636 frecuzrdgsuctlem 10640 uzenom 10642 frecfzennn 10643 frechashgf1o 10645 frec2uzled 10646 hashfz1 11000 hashen 11001 nninfctlemfo 12556 ennnfonelemjn 12968 ennnfonelem1 12973 ennnfonelemhf1o 12979 ennnfonelemrn 12985 ssnnctlemct 13012 |
| Copyright terms: Public domain | W3C validator |