ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzf1od Unicode version

Theorem frec2uzf1od 9867
Description:  G (see frec2uz0d 9860) is a one-to-one onto mapping. (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frec2uzf1od  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
Distinct variable groups:    x, C    ph, x
Allowed substitution hint:    G( x)

Proof of Theorem frec2uzf1od
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 8813 . . . . . . . . 9  |-  ZZ  e.  _V
21mptex 5537 . . . . . . . 8  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  e.  _V
3 vex 2623 . . . . . . . 8  |-  z  e. 
_V
42, 3fvex 5338 . . . . . . 7  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V
54ax-gen 1384 . . . . . 6  |-  A. z
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  z )  e.  _V
6 frec2uz.1 . . . . . 6  |-  ( ph  ->  C  e.  ZZ )
7 frecfnom 6180 . . . . . 6  |-  ( ( A. z ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V  /\  C  e.  ZZ )  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
85, 6, 7sylancr 406 . . . . 5  |-  ( ph  -> frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )  Fn  om )
9 frec2uz.2 . . . . . 6  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
109fneq1i 5121 . . . . 5  |-  ( G  Fn  om  <-> frec ( (
x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )  Fn  om )
118, 10sylibr 133 . . . 4  |-  ( ph  ->  G  Fn  om )
126, 9frec2uzrand 9866 . . . . 5  |-  ( ph  ->  ran  G  =  (
ZZ>= `  C ) )
13 eqimss 3079 . . . . 5  |-  ( ran 
G  =  ( ZZ>= `  C )  ->  ran  G 
C_  ( ZZ>= `  C
) )
1412, 13syl 14 . . . 4  |-  ( ph  ->  ran  G  C_  ( ZZ>=
`  C ) )
15 df-f 5032 . . . 4  |-  ( G : om --> ( ZZ>= `  C )  <->  ( G  Fn  om  /\  ran  G  C_  ( ZZ>= `  C )
) )
1611, 14, 15sylanbrc 409 . . 3  |-  ( ph  ->  G : om --> ( ZZ>= `  C ) )
176adantr 271 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  om )  ->  C  e.  ZZ )
18 simpr 109 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  om )  ->  y  e.  om )
1917, 9, 18frec2uzzd 9861 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  om )  ->  ( G `  y )  e.  ZZ )
20193adant3 964 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( G `  y )  e.  ZZ )
2120zred 8922 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( G `  y )  e.  RR )
2221ltnrd 7650 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  -.  ( G `  y )  <  ( G `  y )
)
2322adantr 271 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  ( G `  y
)  <  ( G `  y ) )
24 simpr 109 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( G `  y
)  =  ( G `
 z ) )
2524breq2d 3863 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( ( G `  y )  <  ( G `  y )  <->  ( G `  y )  <  ( G `  z ) ) )
2623, 25mtbid 633 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  ( G `  y
)  <  ( G `  z ) )
27173adant3 964 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  C  e.  ZZ )
28 simp2 945 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  y  e.  om )
29 simp3 946 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  z  e.  om )
3027, 9, 28, 29frec2uzltd 9864 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( y  e.  z  ->  ( G `  y )  <  ( G `  z )
) )
3130con3d 597 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( -.  ( G `  y )  <  ( G `  z
)  ->  -.  y  e.  z ) )
3231adantr 271 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( -.  ( G `
 y )  < 
( G `  z
)  ->  -.  y  e.  z ) )
3326, 32mpd 13 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  y  e.  z
)
3424breq1d 3861 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( ( G `  y )  <  ( G `  y )  <->  ( G `  z )  <  ( G `  y ) ) )
3523, 34mtbid 633 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  ( G `  z
)  <  ( G `  y ) )
3627, 9, 29, 28frec2uzltd 9864 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( z  e.  y  ->  ( G `  z )  <  ( G `  y )
) )
3736adantr 271 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( z  e.  y  ->  ( G `  z )  <  ( G `  y )
) )
3835, 37mtod 625 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  ->  -.  z  e.  y
)
39 nntri3 6272 . . . . . . . . 9  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( y  =  z  <-> 
( -.  y  e.  z  /\  -.  z  e.  y ) ) )
40393adant1 962 . . . . . . . 8  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( y  =  z  <->  ( -.  y  e.  z  /\  -.  z  e.  y ) ) )
4140adantr 271 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
( y  =  z  <-> 
( -.  y  e.  z  /\  -.  z  e.  y ) ) )
4233, 38, 41mpbir2and 891 . . . . . 6  |-  ( ( ( ph  /\  y  e.  om  /\  z  e. 
om )  /\  ( G `  y )  =  ( G `  z ) )  -> 
y  =  z )
4342ex 114 . . . . 5  |-  ( (
ph  /\  y  e.  om 
/\  z  e.  om )  ->  ( ( G `
 y )  =  ( G `  z
)  ->  y  =  z ) )
44433expb 1145 . . . 4  |-  ( (
ph  /\  ( y  e.  om  /\  z  e. 
om ) )  -> 
( ( G `  y )  =  ( G `  z )  ->  y  =  z ) )
4544ralrimivva 2456 . . 3  |-  ( ph  ->  A. y  e.  om  A. z  e.  om  (
( G `  y
)  =  ( G `
 z )  -> 
y  =  z ) )
46 dff13 5561 . . 3  |-  ( G : om -1-1-> ( ZZ>= `  C )  <->  ( G : om --> ( ZZ>= `  C
)  /\  A. y  e.  om  A. z  e. 
om  ( ( G `
 y )  =  ( G `  z
)  ->  y  =  z ) ) )
4716, 45, 46sylanbrc 409 . 2  |-  ( ph  ->  G : om -1-1-> (
ZZ>= `  C ) )
48 dff1o5 5275 . 2  |-  ( G : om -1-1-onto-> ( ZZ>= `  C )  <->  ( G : om -1-1-> (
ZZ>= `  C )  /\  ran  G  =  ( ZZ>= `  C ) ) )
4947, 12, 48sylanbrc 409 1  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 925   A.wal 1288    = wceq 1290    e. wcel 1439   A.wral 2360   _Vcvv 2620    C_ wss 3000   class class class wbr 3851    |-> cmpt 3905   omcom 4418   ran crn 4452    Fn wfn 5023   -->wf 5024   -1-1->wf1 5025   -1-1-onto->wf1o 5027   ` cfv 5028  (class class class)co 5666  freccfrec 6169   1c1 7405    + caddc 7407    < clt 7576   ZZcz 8804   ZZ>=cuz 9073
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7490  ax-resscn 7491  ax-1cn 7492  ax-1re 7493  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-addcom 7499  ax-addass 7501  ax-distr 7503  ax-i2m1 7504  ax-0lt1 7505  ax-0id 7507  ax-rnegex 7508  ax-cnre 7510  ax-pre-ltirr 7511  ax-pre-ltwlin 7512  ax-pre-lttrn 7513  ax-pre-ltadd 7515
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-recs 6084  df-frec 6170  df-pnf 7578  df-mnf 7579  df-xr 7580  df-ltxr 7581  df-le 7582  df-sub 7709  df-neg 7710  df-inn 8477  df-n0 8728  df-z 8805  df-uz 9074
This theorem is referenced by:  frec2uzisod  9868  frecuzrdglem  9872  frecuzrdgtcl  9873  frecuzrdgsuc  9875  frecuzrdgg  9877  frecuzrdgdomlem  9878  frecuzrdgfunlem  9880  frecuzrdgsuctlem  9884  uzenom  9886  frecfzennn  9887  frechashgf1o  9889  frec2uzled  9890  hashfz1  10245  hashen  10246
  Copyright terms: Public domain W3C validator