Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frec2uzf1od | Unicode version |
Description: (see frec2uz0d 10342) is a one-to-one onto mapping. (Contributed by Jim Kingdon, 17-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | |
frec2uz.2 | frec |
Ref | Expression |
---|---|
frec2uzf1od |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zex 9208 | . . . . . . . . 9 | |
2 | 1 | mptex 5719 | . . . . . . . 8 |
3 | vex 2733 | . . . . . . . 8 | |
4 | 2, 3 | fvex 5514 | . . . . . . 7 |
5 | 4 | ax-gen 1442 | . . . . . 6 |
6 | frec2uz.1 | . . . . . 6 | |
7 | frecfnom 6377 | . . . . . 6 frec | |
8 | 5, 6, 7 | sylancr 412 | . . . . 5 frec |
9 | frec2uz.2 | . . . . . 6 frec | |
10 | 9 | fneq1i 5290 | . . . . 5 frec |
11 | 8, 10 | sylibr 133 | . . . 4 |
12 | 6, 9 | frec2uzrand 10348 | . . . . 5 |
13 | eqimss 3201 | . . . . 5 | |
14 | 12, 13 | syl 14 | . . . 4 |
15 | df-f 5200 | . . . 4 | |
16 | 11, 14, 15 | sylanbrc 415 | . . 3 |
17 | 6 | adantr 274 | . . . . . . . . . . . . . 14 |
18 | simpr 109 | . . . . . . . . . . . . . 14 | |
19 | 17, 9, 18 | frec2uzzd 10343 | . . . . . . . . . . . . 13 |
20 | 19 | 3adant3 1012 | . . . . . . . . . . . 12 |
21 | 20 | zred 9321 | . . . . . . . . . . 11 |
22 | 21 | ltnrd 8018 | . . . . . . . . . 10 |
23 | 22 | adantr 274 | . . . . . . . . 9 |
24 | simpr 109 | . . . . . . . . . 10 | |
25 | 24 | breq2d 3999 | . . . . . . . . 9 |
26 | 23, 25 | mtbid 667 | . . . . . . . 8 |
27 | 17 | 3adant3 1012 | . . . . . . . . . . 11 |
28 | simp2 993 | . . . . . . . . . . 11 | |
29 | simp3 994 | . . . . . . . . . . 11 | |
30 | 27, 9, 28, 29 | frec2uzltd 10346 | . . . . . . . . . 10 |
31 | 30 | con3d 626 | . . . . . . . . 9 |
32 | 31 | adantr 274 | . . . . . . . 8 |
33 | 26, 32 | mpd 13 | . . . . . . 7 |
34 | 24 | breq1d 3997 | . . . . . . . . 9 |
35 | 23, 34 | mtbid 667 | . . . . . . . 8 |
36 | 27, 9, 29, 28 | frec2uzltd 10346 | . . . . . . . . 9 |
37 | 36 | adantr 274 | . . . . . . . 8 |
38 | 35, 37 | mtod 658 | . . . . . . 7 |
39 | nntri3 6473 | . . . . . . . . 9 | |
40 | 39 | 3adant1 1010 | . . . . . . . 8 |
41 | 40 | adantr 274 | . . . . . . 7 |
42 | 33, 38, 41 | mpbir2and 939 | . . . . . 6 |
43 | 42 | ex 114 | . . . . 5 |
44 | 43 | 3expb 1199 | . . . 4 |
45 | 44 | ralrimivva 2552 | . . 3 |
46 | dff13 5744 | . . 3 | |
47 | 16, 45, 46 | sylanbrc 415 | . 2 |
48 | dff1o5 5449 | . 2 | |
49 | 47, 12, 48 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 973 wal 1346 wceq 1348 wcel 2141 wral 2448 cvv 2730 wss 3121 class class class wbr 3987 cmpt 4048 com 4572 crn 4610 wfn 5191 wf 5192 wf1 5193 wf1o 5195 cfv 5196 (class class class)co 5850 freccfrec 6366 c1 7762 caddc 7764 clt 7941 cz 9199 cuz 9474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-recs 6281 df-frec 6367 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-inn 8866 df-n0 9123 df-z 9200 df-uz 9475 |
This theorem is referenced by: frec2uzisod 10350 frecuzrdglem 10354 frecuzrdgtcl 10355 frecuzrdgsuc 10357 frecuzrdgg 10359 frecuzrdgdomlem 10360 frecuzrdgfunlem 10362 frecuzrdgsuctlem 10366 uzenom 10368 frecfzennn 10369 frechashgf1o 10371 frec2uzled 10372 hashfz1 10704 hashen 10705 ennnfonelemjn 12344 ennnfonelem1 12349 ennnfonelemhf1o 12355 ennnfonelemrn 12361 ssnnctlemct 12388 |
Copyright terms: Public domain | W3C validator |