ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuinr Unicode version

Theorem djuinr 7028
Description: The ranges of any left and right injections are disjoint. Remark: the extra generality offered by the two restrictions makes the theorem more readily usable (e.g., by djudom 7058 and djufun 7069) while the simpler statement  |-  ( ran inl  i^i 
ran inr )  =  (/) is easily recovered from it by substituting  _V for both  A and  B as done in casefun 7050). (Contributed by BJ and Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djuinr  |-  ( ran  (inl  |`  A )  i^i 
ran  (inr  |`  B ) )  =  (/)

Proof of Theorem djuinr
StepHypRef Expression
1 djulf1or 7021 . . . 4  |-  (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A )
2 dff1o5 5441 . . . . 5  |-  ( (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A
)  <->  ( (inl  |`  A ) : A -1-1-> ( {
(/) }  X.  A
)  /\  ran  (inl  |`  A )  =  ( { (/) }  X.  A ) ) )
32simprbi 273 . . . 4  |-  ( (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A
)  ->  ran  (inl  |`  A )  =  ( { (/) }  X.  A ) )
41, 3ax-mp 5 . . 3  |-  ran  (inl  |`  A )  =  ( { (/) }  X.  A
)
5 djurf1or 7022 . . . 4  |-  (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B )
6 dff1o5 5441 . . . . 5  |-  ( (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B
)  <->  ( (inr  |`  B ) : B -1-1-> ( { 1o }  X.  B
)  /\  ran  (inr  |`  B )  =  ( { 1o }  X.  B ) ) )
76simprbi 273 . . . 4  |-  ( (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B
)  ->  ran  (inr  |`  B )  =  ( { 1o }  X.  B ) )
85, 7ax-mp 5 . . 3  |-  ran  (inr  |`  B )  =  ( { 1o }  X.  B )
94, 8ineq12i 3321 . 2  |-  ( ran  (inl  |`  A )  i^i 
ran  (inr  |`  B ) )  =  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  B ) )
10 1n0 6400 . . . . 5  |-  1o  =/=  (/)
1110necomi 2421 . . . 4  |-  (/)  =/=  1o
12 disjsn2 3639 . . . 4  |-  ( (/)  =/=  1o  ->  ( { (/)
}  i^i  { 1o } )  =  (/) )
1311, 12ax-mp 5 . . 3  |-  ( {
(/) }  i^i  { 1o } )  =  (/)
14 xpdisj1 5028 . . 3  |-  ( ( { (/) }  i^i  { 1o } )  =  (/)  ->  ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  B ) )  =  (/) )
1513, 14ax-mp 5 . 2  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  B ) )  =  (/)
169, 15eqtri 2186 1  |-  ( ran  (inl  |`  A )  i^i 
ran  (inr  |`  B ) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1343    =/= wne 2336    i^i cin 3115   (/)c0 3409   {csn 3576    X. cxp 4602   ran crn 4605    |` cres 4606   -1-1->wf1 5185   -1-1-onto->wf1o 5187   1oc1o 6377  inlcinl 7010  inrcinr 7011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-inl 7012  df-inr 7013
This theorem is referenced by:  djuin  7029  casefun  7050  djudom  7058  djufun  7069
  Copyright terms: Public domain W3C validator