Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuinr | Unicode version |
Description: The ranges of any left and right injections are disjoint. Remark: the extra generality offered by the two restrictions makes the theorem more readily usable (e.g., by djudom 7082 and djufun 7093) while the simpler statement inl inr is easily recovered from it by substituting for both and as done in casefun 7074). (Contributed by BJ and Jim Kingdon, 21-Jun-2022.) |
Ref | Expression |
---|---|
djuinr | inl inr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djulf1or 7045 | . . . 4 inl | |
2 | dff1o5 5462 | . . . . 5 inl inl inl | |
3 | 2 | simprbi 275 | . . . 4 inl inl |
4 | 1, 3 | ax-mp 5 | . . 3 inl |
5 | djurf1or 7046 | . . . 4 inr | |
6 | dff1o5 5462 | . . . . 5 inr inr inr | |
7 | 6 | simprbi 275 | . . . 4 inr inr |
8 | 5, 7 | ax-mp 5 | . . 3 inr |
9 | 4, 8 | ineq12i 3332 | . 2 inl inr |
10 | 1n0 6423 | . . . . 5 | |
11 | 10 | necomi 2430 | . . . 4 |
12 | disjsn2 3652 | . . . 4 | |
13 | 11, 12 | ax-mp 5 | . . 3 |
14 | xpdisj1 5045 | . . 3 | |
15 | 13, 14 | ax-mp 5 | . 2 |
16 | 9, 15 | eqtri 2196 | 1 inl inr |
Colors of variables: wff set class |
Syntax hints: wceq 1353 wne 2345 cin 3126 c0 3420 csn 3589 cxp 4618 crn 4621 cres 4622 wf1 5205 wf1o 5207 c1o 6400 inlcinl 7034 inrcinr 7035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-suc 4365 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-1st 6131 df-2nd 6132 df-1o 6407 df-inl 7036 df-inr 7037 |
This theorem is referenced by: djuin 7053 casefun 7074 djudom 7082 djufun 7093 |
Copyright terms: Public domain | W3C validator |