ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuinr Unicode version

Theorem djuinr 7040
Description: The ranges of any left and right injections are disjoint. Remark: the extra generality offered by the two restrictions makes the theorem more readily usable (e.g., by djudom 7070 and djufun 7081) while the simpler statement  |-  ( ran inl  i^i 
ran inr )  =  (/) is easily recovered from it by substituting  _V for both  A and  B as done in casefun 7062). (Contributed by BJ and Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djuinr  |-  ( ran  (inl  |`  A )  i^i 
ran  (inr  |`  B ) )  =  (/)

Proof of Theorem djuinr
StepHypRef Expression
1 djulf1or 7033 . . . 4  |-  (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A )
2 dff1o5 5451 . . . . 5  |-  ( (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A
)  <->  ( (inl  |`  A ) : A -1-1-> ( {
(/) }  X.  A
)  /\  ran  (inl  |`  A )  =  ( { (/) }  X.  A ) ) )
32simprbi 273 . . . 4  |-  ( (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A
)  ->  ran  (inl  |`  A )  =  ( { (/) }  X.  A ) )
41, 3ax-mp 5 . . 3  |-  ran  (inl  |`  A )  =  ( { (/) }  X.  A
)
5 djurf1or 7034 . . . 4  |-  (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B )
6 dff1o5 5451 . . . . 5  |-  ( (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B
)  <->  ( (inr  |`  B ) : B -1-1-> ( { 1o }  X.  B
)  /\  ran  (inr  |`  B )  =  ( { 1o }  X.  B ) ) )
76simprbi 273 . . . 4  |-  ( (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B
)  ->  ran  (inr  |`  B )  =  ( { 1o }  X.  B ) )
85, 7ax-mp 5 . . 3  |-  ran  (inr  |`  B )  =  ( { 1o }  X.  B )
94, 8ineq12i 3326 . 2  |-  ( ran  (inl  |`  A )  i^i 
ran  (inr  |`  B ) )  =  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  B ) )
10 1n0 6411 . . . . 5  |-  1o  =/=  (/)
1110necomi 2425 . . . 4  |-  (/)  =/=  1o
12 disjsn2 3646 . . . 4  |-  ( (/)  =/=  1o  ->  ( { (/)
}  i^i  { 1o } )  =  (/) )
1311, 12ax-mp 5 . . 3  |-  ( {
(/) }  i^i  { 1o } )  =  (/)
14 xpdisj1 5035 . . 3  |-  ( ( { (/) }  i^i  { 1o } )  =  (/)  ->  ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  B ) )  =  (/) )
1513, 14ax-mp 5 . 2  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  B ) )  =  (/)
169, 15eqtri 2191 1  |-  ( ran  (inl  |`  A )  i^i 
ran  (inr  |`  B ) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1348    =/= wne 2340    i^i cin 3120   (/)c0 3414   {csn 3583    X. cxp 4609   ran crn 4612    |` cres 4613   -1-1->wf1 5195   -1-1-onto->wf1o 5197   1oc1o 6388  inlcinl 7022  inrcinr 7023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-inl 7024  df-inr 7025
This theorem is referenced by:  djuin  7041  casefun  7062  djudom  7070  djufun  7081
  Copyright terms: Public domain W3C validator