ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuinr Unicode version

Theorem djuinr 7191
Description: The ranges of any left and right injections are disjoint. Remark: the extra generality offered by the two restrictions makes the theorem more readily usable (e.g., by djudom 7221 and djufun 7232) while the simpler statement  |-  ( ran inl  i^i 
ran inr )  =  (/) is easily recovered from it by substituting  _V for both  A and  B as done in casefun 7213). (Contributed by BJ and Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djuinr  |-  ( ran  (inl  |`  A )  i^i 
ran  (inr  |`  B ) )  =  (/)

Proof of Theorem djuinr
StepHypRef Expression
1 djulf1or 7184 . . . 4  |-  (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A )
2 dff1o5 5553 . . . . 5  |-  ( (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A
)  <->  ( (inl  |`  A ) : A -1-1-> ( {
(/) }  X.  A
)  /\  ran  (inl  |`  A )  =  ( { (/) }  X.  A ) ) )
32simprbi 275 . . . 4  |-  ( (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A
)  ->  ran  (inl  |`  A )  =  ( { (/) }  X.  A ) )
41, 3ax-mp 5 . . 3  |-  ran  (inl  |`  A )  =  ( { (/) }  X.  A
)
5 djurf1or 7185 . . . 4  |-  (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B )
6 dff1o5 5553 . . . . 5  |-  ( (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B
)  <->  ( (inr  |`  B ) : B -1-1-> ( { 1o }  X.  B
)  /\  ran  (inr  |`  B )  =  ( { 1o }  X.  B ) ) )
76simprbi 275 . . . 4  |-  ( (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B
)  ->  ran  (inr  |`  B )  =  ( { 1o }  X.  B ) )
85, 7ax-mp 5 . . 3  |-  ran  (inr  |`  B )  =  ( { 1o }  X.  B )
94, 8ineq12i 3380 . 2  |-  ( ran  (inl  |`  A )  i^i 
ran  (inr  |`  B ) )  =  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  B ) )
10 1n0 6541 . . . . 5  |-  1o  =/=  (/)
1110necomi 2463 . . . 4  |-  (/)  =/=  1o
12 disjsn2 3706 . . . 4  |-  ( (/)  =/=  1o  ->  ( { (/)
}  i^i  { 1o } )  =  (/) )
1311, 12ax-mp 5 . . 3  |-  ( {
(/) }  i^i  { 1o } )  =  (/)
14 xpdisj1 5126 . . 3  |-  ( ( { (/) }  i^i  { 1o } )  =  (/)  ->  ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  B ) )  =  (/) )
1513, 14ax-mp 5 . 2  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  B ) )  =  (/)
169, 15eqtri 2228 1  |-  ( ran  (inl  |`  A )  i^i 
ran  (inr  |`  B ) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    =/= wne 2378    i^i cin 3173   (/)c0 3468   {csn 3643    X. cxp 4691   ran crn 4694    |` cres 4695   -1-1->wf1 5287   -1-1-onto->wf1o 5289   1oc1o 6518  inlcinl 7173  inrcinr 7174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-1o 6525  df-inl 7175  df-inr 7176
This theorem is referenced by:  djuin  7192  casefun  7213  djudom  7221  djufun  7232
  Copyright terms: Public domain W3C validator