Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuinr | Unicode version |
Description: The ranges of any left and right injections are disjoint. Remark: the extra generality offered by the two restrictions makes the theorem more readily usable (e.g., by djudom 7058 and djufun 7069) while the simpler statement inl inr is easily recovered from it by substituting for both and as done in casefun 7050). (Contributed by BJ and Jim Kingdon, 21-Jun-2022.) |
Ref | Expression |
---|---|
djuinr | inl inr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djulf1or 7021 | . . . 4 inl | |
2 | dff1o5 5441 | . . . . 5 inl inl inl | |
3 | 2 | simprbi 273 | . . . 4 inl inl |
4 | 1, 3 | ax-mp 5 | . . 3 inl |
5 | djurf1or 7022 | . . . 4 inr | |
6 | dff1o5 5441 | . . . . 5 inr inr inr | |
7 | 6 | simprbi 273 | . . . 4 inr inr |
8 | 5, 7 | ax-mp 5 | . . 3 inr |
9 | 4, 8 | ineq12i 3321 | . 2 inl inr |
10 | 1n0 6400 | . . . . 5 | |
11 | 10 | necomi 2421 | . . . 4 |
12 | disjsn2 3639 | . . . 4 | |
13 | 11, 12 | ax-mp 5 | . . 3 |
14 | xpdisj1 5028 | . . 3 | |
15 | 13, 14 | ax-mp 5 | . 2 |
16 | 9, 15 | eqtri 2186 | 1 inl inr |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wne 2336 cin 3115 c0 3409 csn 3576 cxp 4602 crn 4605 cres 4606 wf1 5185 wf1o 5187 c1o 6377 inlcinl 7010 inrcinr 7011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-inl 7012 df-inr 7013 |
This theorem is referenced by: djuin 7029 casefun 7050 djudom 7058 djufun 7069 |
Copyright terms: Public domain | W3C validator |