ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuinr Unicode version

Theorem djuinr 7122
Description: The ranges of any left and right injections are disjoint. Remark: the extra generality offered by the two restrictions makes the theorem more readily usable (e.g., by djudom 7152 and djufun 7163) while the simpler statement  |-  ( ran inl  i^i 
ran inr )  =  (/) is easily recovered from it by substituting  _V for both  A and  B as done in casefun 7144). (Contributed by BJ and Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djuinr  |-  ( ran  (inl  |`  A )  i^i 
ran  (inr  |`  B ) )  =  (/)

Proof of Theorem djuinr
StepHypRef Expression
1 djulf1or 7115 . . . 4  |-  (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A )
2 dff1o5 5509 . . . . 5  |-  ( (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A
)  <->  ( (inl  |`  A ) : A -1-1-> ( {
(/) }  X.  A
)  /\  ran  (inl  |`  A )  =  ( { (/) }  X.  A ) ) )
32simprbi 275 . . . 4  |-  ( (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A
)  ->  ran  (inl  |`  A )  =  ( { (/) }  X.  A ) )
41, 3ax-mp 5 . . 3  |-  ran  (inl  |`  A )  =  ( { (/) }  X.  A
)
5 djurf1or 7116 . . . 4  |-  (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B )
6 dff1o5 5509 . . . . 5  |-  ( (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B
)  <->  ( (inr  |`  B ) : B -1-1-> ( { 1o }  X.  B
)  /\  ran  (inr  |`  B )  =  ( { 1o }  X.  B ) ) )
76simprbi 275 . . . 4  |-  ( (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B
)  ->  ran  (inr  |`  B )  =  ( { 1o }  X.  B ) )
85, 7ax-mp 5 . . 3  |-  ran  (inr  |`  B )  =  ( { 1o }  X.  B )
94, 8ineq12i 3358 . 2  |-  ( ran  (inl  |`  A )  i^i 
ran  (inr  |`  B ) )  =  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  B ) )
10 1n0 6485 . . . . 5  |-  1o  =/=  (/)
1110necomi 2449 . . . 4  |-  (/)  =/=  1o
12 disjsn2 3681 . . . 4  |-  ( (/)  =/=  1o  ->  ( { (/)
}  i^i  { 1o } )  =  (/) )
1311, 12ax-mp 5 . . 3  |-  ( {
(/) }  i^i  { 1o } )  =  (/)
14 xpdisj1 5090 . . 3  |-  ( ( { (/) }  i^i  { 1o } )  =  (/)  ->  ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  B ) )  =  (/) )
1513, 14ax-mp 5 . 2  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  B ) )  =  (/)
169, 15eqtri 2214 1  |-  ( ran  (inl  |`  A )  i^i 
ran  (inr  |`  B ) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    =/= wne 2364    i^i cin 3152   (/)c0 3446   {csn 3618    X. cxp 4657   ran crn 4660    |` cres 4661   -1-1->wf1 5251   -1-1-onto->wf1o 5253   1oc1o 6462  inlcinl 7104  inrcinr 7105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-inl 7106  df-inr 7107
This theorem is referenced by:  djuin  7123  casefun  7144  djudom  7152  djufun  7163
  Copyright terms: Public domain W3C validator