ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eninl Unicode version

Theorem eninl 7158
Description: Equinumerosity of a set and its image under left injection. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
eninl  |-  ( A  e.  V  ->  (inl " A )  ~~  A
)

Proof of Theorem eninl
StepHypRef Expression
1 djulf1or 7117 . . . 4  |-  (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A )
2 f1oeng 6813 . . . 4  |-  ( ( A  e.  V  /\  (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A ) )  ->  A  ~~  ( { (/) }  X.  A ) )
31, 2mpan2 425 . . 3  |-  ( A  e.  V  ->  A  ~~  ( { (/) }  X.  A ) )
4 df-ima 4673 . . . 4  |-  (inl " A )  =  ran  (inl  |`  A )
5 dff1o5 5510 . . . . . 6  |-  ( (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A
)  <->  ( (inl  |`  A ) : A -1-1-> ( {
(/) }  X.  A
)  /\  ran  (inl  |`  A )  =  ( { (/) }  X.  A ) ) )
61, 5mpbi 145 . . . . 5  |-  ( (inl  |`  A ) : A -1-1-> ( { (/) }  X.  A
)  /\  ran  (inl  |`  A )  =  ( { (/) }  X.  A ) )
76simpri 113 . . . 4  |-  ran  (inl  |`  A )  =  ( { (/) }  X.  A
)
84, 7eqtri 2214 . . 3  |-  (inl " A )  =  ( { (/) }  X.  A
)
93, 8breqtrrdi 4072 . 2  |-  ( A  e.  V  ->  A  ~~  (inl " A ) )
109ensymd 6839 1  |-  ( A  e.  V  ->  (inl " A )  ~~  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   (/)c0 3447   {csn 3619   class class class wbr 4030    X. cxp 4658   ran crn 4661    |` cres 4662   "cima 4663   -1-1->wf1 5252   -1-1-onto->wf1o 5254    ~~ cen 6794  inlcinl 7106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-er 6589  df-en 6797  df-inl 7108
This theorem is referenced by:  endjudisj  7272  djuen  7273
  Copyright terms: Public domain W3C validator