ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eninl Unicode version

Theorem eninl 7199
Description: Equinumerosity of a set and its image under left injection. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
eninl  |-  ( A  e.  V  ->  (inl " A )  ~~  A
)

Proof of Theorem eninl
StepHypRef Expression
1 djulf1or 7158 . . . 4  |-  (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A )
2 f1oeng 6848 . . . 4  |-  ( ( A  e.  V  /\  (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A ) )  ->  A  ~~  ( { (/) }  X.  A ) )
31, 2mpan2 425 . . 3  |-  ( A  e.  V  ->  A  ~~  ( { (/) }  X.  A ) )
4 df-ima 4688 . . . 4  |-  (inl " A )  =  ran  (inl  |`  A )
5 dff1o5 5531 . . . . . 6  |-  ( (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A
)  <->  ( (inl  |`  A ) : A -1-1-> ( {
(/) }  X.  A
)  /\  ran  (inl  |`  A )  =  ( { (/) }  X.  A ) ) )
61, 5mpbi 145 . . . . 5  |-  ( (inl  |`  A ) : A -1-1-> ( { (/) }  X.  A
)  /\  ran  (inl  |`  A )  =  ( { (/) }  X.  A ) )
76simpri 113 . . . 4  |-  ran  (inl  |`  A )  =  ( { (/) }  X.  A
)
84, 7eqtri 2226 . . 3  |-  (inl " A )  =  ( { (/) }  X.  A
)
93, 8breqtrrdi 4086 . 2  |-  ( A  e.  V  ->  A  ~~  (inl " A ) )
109ensymd 6875 1  |-  ( A  e.  V  ->  (inl " A )  ~~  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   (/)c0 3460   {csn 3633   class class class wbr 4044    X. cxp 4673   ran crn 4676    |` cres 4677   "cima 4678   -1-1->wf1 5268   -1-1-onto->wf1o 5270    ~~ cen 6825  inlcinl 7147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1st 6226  df-2nd 6227  df-er 6620  df-en 6828  df-inl 7149
This theorem is referenced by:  endjudisj  7322  djuen  7323
  Copyright terms: Public domain W3C validator