| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssnnctlemct | Unicode version | ||
| Description: Lemma for ssnnct 12933. The result. (Contributed by Jim Kingdon, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| ssnnctlem.g |
|
| Ref | Expression |
|---|---|
| ssnnctlemct |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2270 |
. . . . 5
| |
| 2 | 1 | dcbid 840 |
. . . 4
|
| 3 | 2 | cbvralv 2742 |
. . 3
|
| 4 | imassrn 5052 |
. . . . 5
| |
| 5 | 1z 9433 |
. . . . . . . . . 10
| |
| 6 | id 19 |
. . . . . . . . . . 11
| |
| 7 | ssnnctlem.g |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | frec2uzf1od 10588 |
. . . . . . . . . 10
|
| 9 | 5, 8 | ax-mp 5 |
. . . . . . . . 9
|
| 10 | nnuz 9719 |
. . . . . . . . . 10
| |
| 11 | f1oeq3 5534 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . . . 9
|
| 13 | 9, 12 | mpbir 146 |
. . . . . . . 8
|
| 14 | f1ocnv 5557 |
. . . . . . . 8
| |
| 15 | 13, 14 | ax-mp 5 |
. . . . . . 7
|
| 16 | dff1o5 5553 |
. . . . . . 7
| |
| 17 | 15, 16 | mpbi 145 |
. . . . . 6
|
| 18 | 17 | simpri 113 |
. . . . 5
|
| 19 | 4, 18 | sseqtri 3235 |
. . . 4
|
| 20 | eleq1 2270 |
. . . . . . . 8
| |
| 21 | 20 | dcbid 840 |
. . . . . . 7
|
| 22 | simplr 528 |
. . . . . . 7
| |
| 23 | f1of 5544 |
. . . . . . . . 9
| |
| 24 | 13, 23 | mp1i 10 |
. . . . . . . 8
|
| 25 | simpr 110 |
. . . . . . . 8
| |
| 26 | 24, 25 | ffvelcdmd 5739 |
. . . . . . 7
|
| 27 | 21, 22, 26 | rspcdva 2889 |
. . . . . 6
|
| 28 | f1of1 5543 |
. . . . . . . . . 10
| |
| 29 | 15, 28 | ax-mp 5 |
. . . . . . . . 9
|
| 30 | simpll 527 |
. . . . . . . . 9
| |
| 31 | f1elima 5865 |
. . . . . . . . 9
| |
| 32 | 29, 26, 30, 31 | mp3an2i 1355 |
. . . . . . . 8
|
| 33 | f1ocnvfv1 5869 |
. . . . . . . . . . 11
| |
| 34 | 13, 33 | mpan 424 |
. . . . . . . . . 10
|
| 35 | 34 | adantl 277 |
. . . . . . . . 9
|
| 36 | 35 | eleq1d 2276 |
. . . . . . . 8
|
| 37 | 32, 36 | bitr3d 190 |
. . . . . . 7
|
| 38 | 37 | dcbid 840 |
. . . . . 6
|
| 39 | 27, 38 | mpbid 147 |
. . . . 5
|
| 40 | 39 | ralrimiva 2581 |
. . . 4
|
| 41 | ssomct 12931 |
. . . 4
| |
| 42 | 19, 40, 41 | sylancr 414 |
. . 3
|
| 43 | 3, 42 | sylan2b 287 |
. 2
|
| 44 | nnex 9077 |
. . . . . 6
| |
| 45 | 44 | ssex 4197 |
. . . . 5
|
| 46 | f1ores 5559 |
. . . . . 6
| |
| 47 | 29, 46 | mpan 424 |
. . . . 5
|
| 48 | f1oeng 6871 |
. . . . 5
| |
| 49 | 45, 47, 48 | syl2anc 411 |
. . . 4
|
| 50 | enct 12919 |
. . . 4
| |
| 51 | 49, 50 | syl 14 |
. . 3
|
| 52 | 51 | adantr 276 |
. 2
|
| 53 | 43, 52 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-1o 6525 df-er 6643 df-en 6851 df-dju 7166 df-inl 7175 df-inr 7176 df-case 7212 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 |
| This theorem is referenced by: ssnnct 12933 |
| Copyright terms: Public domain | W3C validator |