| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssnnctlemct | Unicode version | ||
| Description: Lemma for ssnnct 12818. The result. (Contributed by Jim Kingdon, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| ssnnctlem.g |
|
| Ref | Expression |
|---|---|
| ssnnctlemct |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2268 |
. . . . 5
| |
| 2 | 1 | dcbid 840 |
. . . 4
|
| 3 | 2 | cbvralv 2738 |
. . 3
|
| 4 | imassrn 5033 |
. . . . 5
| |
| 5 | 1z 9398 |
. . . . . . . . . 10
| |
| 6 | id 19 |
. . . . . . . . . . 11
| |
| 7 | ssnnctlem.g |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | frec2uzf1od 10551 |
. . . . . . . . . 10
|
| 9 | 5, 8 | ax-mp 5 |
. . . . . . . . 9
|
| 10 | nnuz 9684 |
. . . . . . . . . 10
| |
| 11 | f1oeq3 5512 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . . . 9
|
| 13 | 9, 12 | mpbir 146 |
. . . . . . . 8
|
| 14 | f1ocnv 5535 |
. . . . . . . 8
| |
| 15 | 13, 14 | ax-mp 5 |
. . . . . . 7
|
| 16 | dff1o5 5531 |
. . . . . . 7
| |
| 17 | 15, 16 | mpbi 145 |
. . . . . 6
|
| 18 | 17 | simpri 113 |
. . . . 5
|
| 19 | 4, 18 | sseqtri 3227 |
. . . 4
|
| 20 | eleq1 2268 |
. . . . . . . 8
| |
| 21 | 20 | dcbid 840 |
. . . . . . 7
|
| 22 | simplr 528 |
. . . . . . 7
| |
| 23 | f1of 5522 |
. . . . . . . . 9
| |
| 24 | 13, 23 | mp1i 10 |
. . . . . . . 8
|
| 25 | simpr 110 |
. . . . . . . 8
| |
| 26 | 24, 25 | ffvelcdmd 5716 |
. . . . . . 7
|
| 27 | 21, 22, 26 | rspcdva 2882 |
. . . . . 6
|
| 28 | f1of1 5521 |
. . . . . . . . . 10
| |
| 29 | 15, 28 | ax-mp 5 |
. . . . . . . . 9
|
| 30 | simpll 527 |
. . . . . . . . 9
| |
| 31 | f1elima 5842 |
. . . . . . . . 9
| |
| 32 | 29, 26, 30, 31 | mp3an2i 1355 |
. . . . . . . 8
|
| 33 | f1ocnvfv1 5846 |
. . . . . . . . . . 11
| |
| 34 | 13, 33 | mpan 424 |
. . . . . . . . . 10
|
| 35 | 34 | adantl 277 |
. . . . . . . . 9
|
| 36 | 35 | eleq1d 2274 |
. . . . . . . 8
|
| 37 | 32, 36 | bitr3d 190 |
. . . . . . 7
|
| 38 | 37 | dcbid 840 |
. . . . . 6
|
| 39 | 27, 38 | mpbid 147 |
. . . . 5
|
| 40 | 39 | ralrimiva 2579 |
. . . 4
|
| 41 | ssomct 12816 |
. . . 4
| |
| 42 | 19, 40, 41 | sylancr 414 |
. . 3
|
| 43 | 3, 42 | sylan2b 287 |
. 2
|
| 44 | nnex 9042 |
. . . . . 6
| |
| 45 | 44 | ssex 4181 |
. . . . 5
|
| 46 | f1ores 5537 |
. . . . . 6
| |
| 47 | 29, 46 | mpan 424 |
. . . . 5
|
| 48 | f1oeng 6848 |
. . . . 5
| |
| 49 | 45, 47, 48 | syl2anc 411 |
. . . 4
|
| 50 | enct 12804 |
. . . 4
| |
| 51 | 49, 50 | syl 14 |
. . 3
|
| 52 | 51 | adantr 276 |
. 2
|
| 53 | 43, 52 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-1o 6502 df-er 6620 df-en 6828 df-dju 7140 df-inl 7149 df-inr 7150 df-case 7186 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 |
| This theorem is referenced by: ssnnct 12818 |
| Copyright terms: Public domain | W3C validator |