Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssnnctlemct | Unicode version |
Description: Lemma for ssnnct 12389. The result. (Contributed by Jim Kingdon, 29-Sep-2024.) |
Ref | Expression |
---|---|
ssnnctlem.g | frec |
Ref | Expression |
---|---|
ssnnctlemct | DECID ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2233 | . . . . 5 | |
2 | 1 | dcbid 833 | . . . 4 DECID DECID |
3 | 2 | cbvralv 2696 | . . 3 DECID DECID |
4 | imassrn 4962 | . . . . 5 | |
5 | 1z 9225 | . . . . . . . . . 10 | |
6 | id 19 | . . . . . . . . . . 11 | |
7 | ssnnctlem.g | . . . . . . . . . . 11 frec | |
8 | 6, 7 | frec2uzf1od 10349 | . . . . . . . . . 10 |
9 | 5, 8 | ax-mp 5 | . . . . . . . . 9 |
10 | nnuz 9509 | . . . . . . . . . 10 | |
11 | f1oeq3 5431 | . . . . . . . . . 10 | |
12 | 10, 11 | ax-mp 5 | . . . . . . . . 9 |
13 | 9, 12 | mpbir 145 | . . . . . . . 8 |
14 | f1ocnv 5453 | . . . . . . . 8 | |
15 | 13, 14 | ax-mp 5 | . . . . . . 7 |
16 | dff1o5 5449 | . . . . . . 7 | |
17 | 15, 16 | mpbi 144 | . . . . . 6 |
18 | 17 | simpri 112 | . . . . 5 |
19 | 4, 18 | sseqtri 3181 | . . . 4 |
20 | eleq1 2233 | . . . . . . . 8 | |
21 | 20 | dcbid 833 | . . . . . . 7 DECID DECID |
22 | simplr 525 | . . . . . . 7 DECID DECID | |
23 | f1of 5440 | . . . . . . . . 9 | |
24 | 13, 23 | mp1i 10 | . . . . . . . 8 DECID |
25 | simpr 109 | . . . . . . . 8 DECID | |
26 | 24, 25 | ffvelrnd 5629 | . . . . . . 7 DECID |
27 | 21, 22, 26 | rspcdva 2839 | . . . . . 6 DECID DECID |
28 | f1of1 5439 | . . . . . . . . . 10 | |
29 | 15, 28 | ax-mp 5 | . . . . . . . . 9 |
30 | simpll 524 | . . . . . . . . 9 DECID | |
31 | f1elima 5749 | . . . . . . . . 9 | |
32 | 29, 26, 30, 31 | mp3an2i 1337 | . . . . . . . 8 DECID |
33 | f1ocnvfv1 5753 | . . . . . . . . . . 11 | |
34 | 13, 33 | mpan 422 | . . . . . . . . . 10 |
35 | 34 | adantl 275 | . . . . . . . . 9 DECID |
36 | 35 | eleq1d 2239 | . . . . . . . 8 DECID |
37 | 32, 36 | bitr3d 189 | . . . . . . 7 DECID |
38 | 37 | dcbid 833 | . . . . . 6 DECID DECID DECID |
39 | 27, 38 | mpbid 146 | . . . . 5 DECID DECID |
40 | 39 | ralrimiva 2543 | . . . 4 DECID DECID |
41 | ssomct 12387 | . . . 4 DECID ⊔ | |
42 | 19, 40, 41 | sylancr 412 | . . 3 DECID ⊔ |
43 | 3, 42 | sylan2b 285 | . 2 DECID ⊔ |
44 | nnex 8871 | . . . . . 6 | |
45 | 44 | ssex 4124 | . . . . 5 |
46 | f1ores 5455 | . . . . . 6 | |
47 | 29, 46 | mpan 422 | . . . . 5 |
48 | f1oeng 6731 | . . . . 5 | |
49 | 45, 47, 48 | syl2anc 409 | . . . 4 |
50 | enct 12375 | . . . 4 ⊔ ⊔ | |
51 | 49, 50 | syl 14 | . . 3 ⊔ ⊔ |
52 | 51 | adantr 274 | . 2 DECID ⊔ ⊔ |
53 | 43, 52 | mpbird 166 | 1 DECID ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 DECID wdc 829 wceq 1348 wex 1485 wcel 2141 wral 2448 cvv 2730 wss 3121 class class class wbr 3987 cmpt 4048 com 4572 ccnv 4608 crn 4610 cres 4611 cima 4612 wf 5192 wf1 5193 wfo 5194 wf1o 5195 cfv 5196 (class class class)co 5850 freccfrec 6366 c1o 6385 cen 6712 ⊔ cdju 7010 c1 7762 caddc 7764 cn 8865 cz 9199 cuz 9474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-frec 6367 df-1o 6392 df-er 6509 df-en 6715 df-dju 7011 df-inl 7020 df-inr 7021 df-case 7057 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-inn 8866 df-n0 9123 df-z 9200 df-uz 9475 |
This theorem is referenced by: ssnnct 12389 |
Copyright terms: Public domain | W3C validator |