ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnnctlemct Unicode version

Theorem ssnnctlemct 12375
Description: Lemma for ssnnct 12376. The result. (Contributed by Jim Kingdon, 29-Sep-2024.)
Hypothesis
Ref Expression
ssnnctlem.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  1 )
Assertion
Ref Expression
ssnnctlemct  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A
)  ->  E. f 
f : om -onto-> ( A 1o ) )
Distinct variable groups:    A, f    x, A    f, G
Allowed substitution hint:    G( x)

Proof of Theorem ssnnctlemct
Dummy variables  g  z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2228 . . . . 5  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
21dcbid 828 . . . 4  |-  ( x  =  z  ->  (DECID  x  e.  A  <-> DECID  z  e.  A )
)
32cbvralv 2691 . . 3  |-  ( A. x  e.  NN DECID  x  e.  A  <->  A. z  e.  NN DECID  z  e.  A )
4 imassrn 4956 . . . . 5  |-  ( `' G " A ) 
C_  ran  `' G
5 1z 9213 . . . . . . . . . 10  |-  1  e.  ZZ
6 id 19 . . . . . . . . . . 11  |-  ( 1  e.  ZZ  ->  1  e.  ZZ )
7 ssnnctlem.g . . . . . . . . . . 11  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  1 )
86, 7frec2uzf1od 10337 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  G : om -1-1-onto-> ( ZZ>= `  1 )
)
95, 8ax-mp 5 . . . . . . . . 9  |-  G : om
-1-1-onto-> ( ZZ>= `  1 )
10 nnuz 9497 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
11 f1oeq3 5422 . . . . . . . . . 10  |-  ( NN  =  ( ZZ>= `  1
)  ->  ( G : om -1-1-onto-> NN  <->  G : om -1-1-onto-> ( ZZ>= `  1 )
) )
1210, 11ax-mp 5 . . . . . . . . 9  |-  ( G : om -1-1-onto-> NN  <->  G : om -1-1-onto-> ( ZZ>= `  1 )
)
139, 12mpbir 145 . . . . . . . 8  |-  G : om
-1-1-onto-> NN
14 f1ocnv 5444 . . . . . . . 8  |-  ( G : om -1-1-onto-> NN  ->  `' G : NN -1-1-onto-> om )
1513, 14ax-mp 5 . . . . . . 7  |-  `' G : NN -1-1-onto-> om
16 dff1o5 5440 . . . . . . 7  |-  ( `' G : NN -1-1-onto-> om  <->  ( `' G : NN -1-1-> om  /\  ran  `' G  =  om )
)
1715, 16mpbi 144 . . . . . 6  |-  ( `' G : NN -1-1-> om  /\ 
ran  `' G  =  om )
1817simpri 112 . . . . 5  |-  ran  `' G  =  om
194, 18sseqtri 3175 . . . 4  |-  ( `' G " A ) 
C_  om
20 eleq1 2228 . . . . . . . 8  |-  ( z  =  ( G `  y )  ->  (
z  e.  A  <->  ( G `  y )  e.  A
) )
2120dcbid 828 . . . . . . 7  |-  ( z  =  ( G `  y )  ->  (DECID  z  e.  A  <-> DECID  ( G `  y )  e.  A ) )
22 simplr 520 . . . . . . 7  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  A. z  e.  NN DECID  z  e.  A )
23 f1of 5431 . . . . . . . . 9  |-  ( G : om -1-1-onto-> NN  ->  G : om
--> NN )
2413, 23mp1i 10 . . . . . . . 8  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  G : om --> NN )
25 simpr 109 . . . . . . . 8  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  y  e.  om )
2624, 25ffvelrnd 5620 . . . . . . 7  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  ( G `  y )  e.  NN )
2721, 22, 26rspcdva 2834 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  -> DECID  ( G `  y
)  e.  A )
28 f1of1 5430 . . . . . . . . . 10  |-  ( `' G : NN -1-1-onto-> om  ->  `' G : NN -1-1-> om )
2915, 28ax-mp 5 . . . . . . . . 9  |-  `' G : NN -1-1-> om
30 simpll 519 . . . . . . . . 9  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  A  C_  NN )
31 f1elima 5740 . . . . . . . . 9  |-  ( ( `' G : NN -1-1-> om  /\  ( G `  y
)  e.  NN  /\  A  C_  NN )  -> 
( ( `' G `  ( G `  y
) )  e.  ( `' G " A )  <-> 
( G `  y
)  e.  A ) )
3229, 26, 30, 31mp3an2i 1332 . . . . . . . 8  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  (
( `' G `  ( G `  y ) )  e.  ( `' G " A )  <-> 
( G `  y
)  e.  A ) )
33 f1ocnvfv1 5744 . . . . . . . . . . 11  |-  ( ( G : om -1-1-onto-> NN  /\  y  e. 
om )  ->  ( `' G `  ( G `
 y ) )  =  y )
3413, 33mpan 421 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( `' G `  ( G `
 y ) )  =  y )
3534adantl 275 . . . . . . . . 9  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  ( `' G `  ( G `
 y ) )  =  y )
3635eleq1d 2234 . . . . . . . 8  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  (
( `' G `  ( G `  y ) )  e.  ( `' G " A )  <-> 
y  e.  ( `' G " A ) ) )
3732, 36bitr3d 189 . . . . . . 7  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  (
( G `  y
)  e.  A  <->  y  e.  ( `' G " A ) ) )
3837dcbid 828 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  (DECID  ( G `  y )  e.  A  <-> DECID  y  e.  ( `' G " A ) ) )
3927, 38mpbid 146 . . . . 5  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  -> DECID  y  e.  ( `' G " A ) )
4039ralrimiva 2538 . . . 4  |-  ( ( A  C_  NN  /\  A. z  e.  NN DECID  z  e.  A
)  ->  A. y  e.  om DECID  y  e.  ( `' G " A ) )
41 ssomct 12374 . . . 4  |-  ( ( ( `' G " A )  C_  om  /\  A. y  e.  om DECID  y  e.  ( `' G " A ) )  ->  E. g 
g : om -onto-> (
( `' G " A ) 1o ) )
4219, 40, 41sylancr 411 . . 3  |-  ( ( A  C_  NN  /\  A. z  e.  NN DECID  z  e.  A
)  ->  E. g 
g : om -onto-> (
( `' G " A ) 1o ) )
433, 42sylan2b 285 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A
)  ->  E. g 
g : om -onto-> (
( `' G " A ) 1o ) )
44 nnex 8859 . . . . . 6  |-  NN  e.  _V
4544ssex 4118 . . . . 5  |-  ( A 
C_  NN  ->  A  e. 
_V )
46 f1ores 5446 . . . . . 6  |-  ( ( `' G : NN -1-1-> om  /\  A  C_  NN )  ->  ( `' G  |`  A ) : A -1-1-onto-> ( `' G " A ) )
4729, 46mpan 421 . . . . 5  |-  ( A 
C_  NN  ->  ( `' G  |`  A ) : A -1-1-onto-> ( `' G " A ) )
48 f1oeng 6719 . . . . 5  |-  ( ( A  e.  _V  /\  ( `' G  |`  A ) : A -1-1-onto-> ( `' G " A ) )  ->  A  ~~  ( `' G " A ) )
4945, 47, 48syl2anc 409 . . . 4  |-  ( A 
C_  NN  ->  A  ~~  ( `' G " A ) )
50 enct 12362 . . . 4  |-  ( A 
~~  ( `' G " A )  ->  ( E. f  f : om -onto-> ( A 1o )  <->  E. g  g : om -onto-> ( ( `' G " A ) 1o ) ) )
5149, 50syl 14 . . 3  |-  ( A 
C_  NN  ->  ( E. f  f : om -onto->
( A 1o )  <->  E. g  g : om -onto->
( ( `' G " A ) 1o ) ) )
5251adantr 274 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A
)  ->  ( E. f  f : om -onto->
( A 1o )  <->  E. g  g : om -onto->
( ( `' G " A ) 1o ) ) )
5343, 52mpbird 166 1  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A
)  ->  E. f 
f : om -onto-> ( A 1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2443   _Vcvv 2725    C_ wss 3115   class class class wbr 3981    |-> cmpt 4042   omcom 4566   `'ccnv 4602   ran crn 4604    |` cres 4605   "cima 4606   -->wf 5183   -1-1->wf1 5184   -onto->wfo 5185   -1-1-onto->wf1o 5186   ` cfv 5187  (class class class)co 5841  freccfrec 6354   1oc1o 6373    ~~ cen 6700   ⊔ cdju 6998   1c1 7750    + caddc 7752   NNcn 8853   ZZcz 9187   ZZ>=cuz 9462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-addass 7851  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-ltadd 7865
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-1o 6380  df-er 6497  df-en 6703  df-dju 6999  df-inl 7008  df-inr 7009  df-case 7045  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-inn 8854  df-n0 9111  df-z 9188  df-uz 9463
This theorem is referenced by:  ssnnct  12376
  Copyright terms: Public domain W3C validator