ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnnctlemct Unicode version

Theorem ssnnctlemct 13017
Description: Lemma for ssnnct 13018. The result. (Contributed by Jim Kingdon, 29-Sep-2024.)
Hypothesis
Ref Expression
ssnnctlem.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  1 )
Assertion
Ref Expression
ssnnctlemct  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A
)  ->  E. f 
f : om -onto-> ( A 1o ) )
Distinct variable groups:    A, f    x, A    f, G
Allowed substitution hint:    G( x)

Proof of Theorem ssnnctlemct
Dummy variables  g  z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2292 . . . . 5  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
21dcbid 843 . . . 4  |-  ( x  =  z  ->  (DECID  x  e.  A  <-> DECID  z  e.  A )
)
32cbvralv 2765 . . 3  |-  ( A. x  e.  NN DECID  x  e.  A  <->  A. z  e.  NN DECID  z  e.  A )
4 imassrn 5079 . . . . 5  |-  ( `' G " A ) 
C_  ran  `' G
5 1z 9472 . . . . . . . . . 10  |-  1  e.  ZZ
6 id 19 . . . . . . . . . . 11  |-  ( 1  e.  ZZ  ->  1  e.  ZZ )
7 ssnnctlem.g . . . . . . . . . . 11  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  1 )
86, 7frec2uzf1od 10628 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  G : om -1-1-onto-> ( ZZ>= `  1 )
)
95, 8ax-mp 5 . . . . . . . . 9  |-  G : om
-1-1-onto-> ( ZZ>= `  1 )
10 nnuz 9758 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
11 f1oeq3 5562 . . . . . . . . . 10  |-  ( NN  =  ( ZZ>= `  1
)  ->  ( G : om -1-1-onto-> NN  <->  G : om -1-1-onto-> ( ZZ>= `  1 )
) )
1210, 11ax-mp 5 . . . . . . . . 9  |-  ( G : om -1-1-onto-> NN  <->  G : om -1-1-onto-> ( ZZ>= `  1 )
)
139, 12mpbir 146 . . . . . . . 8  |-  G : om
-1-1-onto-> NN
14 f1ocnv 5585 . . . . . . . 8  |-  ( G : om -1-1-onto-> NN  ->  `' G : NN -1-1-onto-> om )
1513, 14ax-mp 5 . . . . . . 7  |-  `' G : NN -1-1-onto-> om
16 dff1o5 5581 . . . . . . 7  |-  ( `' G : NN -1-1-onto-> om  <->  ( `' G : NN -1-1-> om  /\  ran  `' G  =  om )
)
1715, 16mpbi 145 . . . . . 6  |-  ( `' G : NN -1-1-> om  /\ 
ran  `' G  =  om )
1817simpri 113 . . . . 5  |-  ran  `' G  =  om
194, 18sseqtri 3258 . . . 4  |-  ( `' G " A ) 
C_  om
20 eleq1 2292 . . . . . . . 8  |-  ( z  =  ( G `  y )  ->  (
z  e.  A  <->  ( G `  y )  e.  A
) )
2120dcbid 843 . . . . . . 7  |-  ( z  =  ( G `  y )  ->  (DECID  z  e.  A  <-> DECID  ( G `  y )  e.  A ) )
22 simplr 528 . . . . . . 7  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  A. z  e.  NN DECID  z  e.  A )
23 f1of 5572 . . . . . . . . 9  |-  ( G : om -1-1-onto-> NN  ->  G : om
--> NN )
2413, 23mp1i 10 . . . . . . . 8  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  G : om --> NN )
25 simpr 110 . . . . . . . 8  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  y  e.  om )
2624, 25ffvelcdmd 5771 . . . . . . 7  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  ( G `  y )  e.  NN )
2721, 22, 26rspcdva 2912 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  -> DECID  ( G `  y
)  e.  A )
28 f1of1 5571 . . . . . . . . . 10  |-  ( `' G : NN -1-1-onto-> om  ->  `' G : NN -1-1-> om )
2915, 28ax-mp 5 . . . . . . . . 9  |-  `' G : NN -1-1-> om
30 simpll 527 . . . . . . . . 9  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  A  C_  NN )
31 f1elima 5897 . . . . . . . . 9  |-  ( ( `' G : NN -1-1-> om  /\  ( G `  y
)  e.  NN  /\  A  C_  NN )  -> 
( ( `' G `  ( G `  y
) )  e.  ( `' G " A )  <-> 
( G `  y
)  e.  A ) )
3229, 26, 30, 31mp3an2i 1376 . . . . . . . 8  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  (
( `' G `  ( G `  y ) )  e.  ( `' G " A )  <-> 
( G `  y
)  e.  A ) )
33 f1ocnvfv1 5901 . . . . . . . . . . 11  |-  ( ( G : om -1-1-onto-> NN  /\  y  e. 
om )  ->  ( `' G `  ( G `
 y ) )  =  y )
3413, 33mpan 424 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( `' G `  ( G `
 y ) )  =  y )
3534adantl 277 . . . . . . . . 9  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  ( `' G `  ( G `
 y ) )  =  y )
3635eleq1d 2298 . . . . . . . 8  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  (
( `' G `  ( G `  y ) )  e.  ( `' G " A )  <-> 
y  e.  ( `' G " A ) ) )
3732, 36bitr3d 190 . . . . . . 7  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  (
( G `  y
)  e.  A  <->  y  e.  ( `' G " A ) ) )
3837dcbid 843 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  (DECID  ( G `  y )  e.  A  <-> DECID  y  e.  ( `' G " A ) ) )
3927, 38mpbid 147 . . . . 5  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  -> DECID  y  e.  ( `' G " A ) )
4039ralrimiva 2603 . . . 4  |-  ( ( A  C_  NN  /\  A. z  e.  NN DECID  z  e.  A
)  ->  A. y  e.  om DECID  y  e.  ( `' G " A ) )
41 ssomct 13016 . . . 4  |-  ( ( ( `' G " A )  C_  om  /\  A. y  e.  om DECID  y  e.  ( `' G " A ) )  ->  E. g 
g : om -onto-> (
( `' G " A ) 1o ) )
4219, 40, 41sylancr 414 . . 3  |-  ( ( A  C_  NN  /\  A. z  e.  NN DECID  z  e.  A
)  ->  E. g 
g : om -onto-> (
( `' G " A ) 1o ) )
433, 42sylan2b 287 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A
)  ->  E. g 
g : om -onto-> (
( `' G " A ) 1o ) )
44 nnex 9116 . . . . . 6  |-  NN  e.  _V
4544ssex 4221 . . . . 5  |-  ( A 
C_  NN  ->  A  e. 
_V )
46 f1ores 5587 . . . . . 6  |-  ( ( `' G : NN -1-1-> om  /\  A  C_  NN )  ->  ( `' G  |`  A ) : A -1-1-onto-> ( `' G " A ) )
4729, 46mpan 424 . . . . 5  |-  ( A 
C_  NN  ->  ( `' G  |`  A ) : A -1-1-onto-> ( `' G " A ) )
48 f1oeng 6908 . . . . 5  |-  ( ( A  e.  _V  /\  ( `' G  |`  A ) : A -1-1-onto-> ( `' G " A ) )  ->  A  ~~  ( `' G " A ) )
4945, 47, 48syl2anc 411 . . . 4  |-  ( A 
C_  NN  ->  A  ~~  ( `' G " A ) )
50 enct 13004 . . . 4  |-  ( A 
~~  ( `' G " A )  ->  ( E. f  f : om -onto-> ( A 1o )  <->  E. g  g : om -onto-> ( ( `' G " A ) 1o ) ) )
5149, 50syl 14 . . 3  |-  ( A 
C_  NN  ->  ( E. f  f : om -onto->
( A 1o )  <->  E. g  g : om -onto->
( ( `' G " A ) 1o ) ) )
5251adantr 276 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A
)  ->  ( E. f  f : om -onto->
( A 1o )  <->  E. g  g : om -onto->
( ( `' G " A ) 1o ) ) )
5343, 52mpbird 167 1  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A
)  ->  E. f 
f : om -onto-> ( A 1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197   class class class wbr 4083    |-> cmpt 4145   omcom 4682   `'ccnv 4718   ran crn 4720    |` cres 4721   "cima 4722   -->wf 5314   -1-1->wf1 5315   -onto->wfo 5316   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001  freccfrec 6536   1oc1o 6555    ~~ cen 6885   ⊔ cdju 7204   1c1 8000    + caddc 8002   NNcn 9110   ZZcz 9446   ZZ>=cuz 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-er 6680  df-en 6888  df-dju 7205  df-inl 7214  df-inr 7215  df-case 7251  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723
This theorem is referenced by:  ssnnct  13018
  Copyright terms: Public domain W3C validator