Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssnnctlemct | Unicode version |
Description: Lemma for ssnnct 12376. The result. (Contributed by Jim Kingdon, 29-Sep-2024.) |
Ref | Expression |
---|---|
ssnnctlem.g | frec |
Ref | Expression |
---|---|
ssnnctlemct | DECID ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2228 | . . . . 5 | |
2 | 1 | dcbid 828 | . . . 4 DECID DECID |
3 | 2 | cbvralv 2691 | . . 3 DECID DECID |
4 | imassrn 4956 | . . . . 5 | |
5 | 1z 9213 | . . . . . . . . . 10 | |
6 | id 19 | . . . . . . . . . . 11 | |
7 | ssnnctlem.g | . . . . . . . . . . 11 frec | |
8 | 6, 7 | frec2uzf1od 10337 | . . . . . . . . . 10 |
9 | 5, 8 | ax-mp 5 | . . . . . . . . 9 |
10 | nnuz 9497 | . . . . . . . . . 10 | |
11 | f1oeq3 5422 | . . . . . . . . . 10 | |
12 | 10, 11 | ax-mp 5 | . . . . . . . . 9 |
13 | 9, 12 | mpbir 145 | . . . . . . . 8 |
14 | f1ocnv 5444 | . . . . . . . 8 | |
15 | 13, 14 | ax-mp 5 | . . . . . . 7 |
16 | dff1o5 5440 | . . . . . . 7 | |
17 | 15, 16 | mpbi 144 | . . . . . 6 |
18 | 17 | simpri 112 | . . . . 5 |
19 | 4, 18 | sseqtri 3175 | . . . 4 |
20 | eleq1 2228 | . . . . . . . 8 | |
21 | 20 | dcbid 828 | . . . . . . 7 DECID DECID |
22 | simplr 520 | . . . . . . 7 DECID DECID | |
23 | f1of 5431 | . . . . . . . . 9 | |
24 | 13, 23 | mp1i 10 | . . . . . . . 8 DECID |
25 | simpr 109 | . . . . . . . 8 DECID | |
26 | 24, 25 | ffvelrnd 5620 | . . . . . . 7 DECID |
27 | 21, 22, 26 | rspcdva 2834 | . . . . . 6 DECID DECID |
28 | f1of1 5430 | . . . . . . . . . 10 | |
29 | 15, 28 | ax-mp 5 | . . . . . . . . 9 |
30 | simpll 519 | . . . . . . . . 9 DECID | |
31 | f1elima 5740 | . . . . . . . . 9 | |
32 | 29, 26, 30, 31 | mp3an2i 1332 | . . . . . . . 8 DECID |
33 | f1ocnvfv1 5744 | . . . . . . . . . . 11 | |
34 | 13, 33 | mpan 421 | . . . . . . . . . 10 |
35 | 34 | adantl 275 | . . . . . . . . 9 DECID |
36 | 35 | eleq1d 2234 | . . . . . . . 8 DECID |
37 | 32, 36 | bitr3d 189 | . . . . . . 7 DECID |
38 | 37 | dcbid 828 | . . . . . 6 DECID DECID DECID |
39 | 27, 38 | mpbid 146 | . . . . 5 DECID DECID |
40 | 39 | ralrimiva 2538 | . . . 4 DECID DECID |
41 | ssomct 12374 | . . . 4 DECID ⊔ | |
42 | 19, 40, 41 | sylancr 411 | . . 3 DECID ⊔ |
43 | 3, 42 | sylan2b 285 | . 2 DECID ⊔ |
44 | nnex 8859 | . . . . . 6 | |
45 | 44 | ssex 4118 | . . . . 5 |
46 | f1ores 5446 | . . . . . 6 | |
47 | 29, 46 | mpan 421 | . . . . 5 |
48 | f1oeng 6719 | . . . . 5 | |
49 | 45, 47, 48 | syl2anc 409 | . . . 4 |
50 | enct 12362 | . . . 4 ⊔ ⊔ | |
51 | 49, 50 | syl 14 | . . 3 ⊔ ⊔ |
52 | 51 | adantr 274 | . 2 DECID ⊔ ⊔ |
53 | 43, 52 | mpbird 166 | 1 DECID ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 DECID wdc 824 wceq 1343 wex 1480 wcel 2136 wral 2443 cvv 2725 wss 3115 class class class wbr 3981 cmpt 4042 com 4566 ccnv 4602 crn 4604 cres 4605 cima 4606 wf 5183 wf1 5184 wfo 5185 wf1o 5186 cfv 5187 (class class class)co 5841 freccfrec 6354 c1o 6373 cen 6700 ⊔ cdju 6998 c1 7750 caddc 7752 cn 8853 cz 9187 cuz 9462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-if 3520 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-frec 6355 df-1o 6380 df-er 6497 df-en 6703 df-dju 6999 df-inl 7008 df-inr 7009 df-case 7045 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-n0 9111 df-z 9188 df-uz 9463 |
This theorem is referenced by: ssnnct 12376 |
Copyright terms: Public domain | W3C validator |