ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnnctlemct Unicode version

Theorem ssnnctlemct 12817
Description: Lemma for ssnnct 12818. The result. (Contributed by Jim Kingdon, 29-Sep-2024.)
Hypothesis
Ref Expression
ssnnctlem.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  1 )
Assertion
Ref Expression
ssnnctlemct  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A
)  ->  E. f 
f : om -onto-> ( A 1o ) )
Distinct variable groups:    A, f    x, A    f, G
Allowed substitution hint:    G( x)

Proof of Theorem ssnnctlemct
Dummy variables  g  z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2268 . . . . 5  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
21dcbid 840 . . . 4  |-  ( x  =  z  ->  (DECID  x  e.  A  <-> DECID  z  e.  A )
)
32cbvralv 2738 . . 3  |-  ( A. x  e.  NN DECID  x  e.  A  <->  A. z  e.  NN DECID  z  e.  A )
4 imassrn 5033 . . . . 5  |-  ( `' G " A ) 
C_  ran  `' G
5 1z 9398 . . . . . . . . . 10  |-  1  e.  ZZ
6 id 19 . . . . . . . . . . 11  |-  ( 1  e.  ZZ  ->  1  e.  ZZ )
7 ssnnctlem.g . . . . . . . . . . 11  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  1 )
86, 7frec2uzf1od 10551 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  G : om -1-1-onto-> ( ZZ>= `  1 )
)
95, 8ax-mp 5 . . . . . . . . 9  |-  G : om
-1-1-onto-> ( ZZ>= `  1 )
10 nnuz 9684 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
11 f1oeq3 5512 . . . . . . . . . 10  |-  ( NN  =  ( ZZ>= `  1
)  ->  ( G : om -1-1-onto-> NN  <->  G : om -1-1-onto-> ( ZZ>= `  1 )
) )
1210, 11ax-mp 5 . . . . . . . . 9  |-  ( G : om -1-1-onto-> NN  <->  G : om -1-1-onto-> ( ZZ>= `  1 )
)
139, 12mpbir 146 . . . . . . . 8  |-  G : om
-1-1-onto-> NN
14 f1ocnv 5535 . . . . . . . 8  |-  ( G : om -1-1-onto-> NN  ->  `' G : NN -1-1-onto-> om )
1513, 14ax-mp 5 . . . . . . 7  |-  `' G : NN -1-1-onto-> om
16 dff1o5 5531 . . . . . . 7  |-  ( `' G : NN -1-1-onto-> om  <->  ( `' G : NN -1-1-> om  /\  ran  `' G  =  om )
)
1715, 16mpbi 145 . . . . . 6  |-  ( `' G : NN -1-1-> om  /\ 
ran  `' G  =  om )
1817simpri 113 . . . . 5  |-  ran  `' G  =  om
194, 18sseqtri 3227 . . . 4  |-  ( `' G " A ) 
C_  om
20 eleq1 2268 . . . . . . . 8  |-  ( z  =  ( G `  y )  ->  (
z  e.  A  <->  ( G `  y )  e.  A
) )
2120dcbid 840 . . . . . . 7  |-  ( z  =  ( G `  y )  ->  (DECID  z  e.  A  <-> DECID  ( G `  y )  e.  A ) )
22 simplr 528 . . . . . . 7  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  A. z  e.  NN DECID  z  e.  A )
23 f1of 5522 . . . . . . . . 9  |-  ( G : om -1-1-onto-> NN  ->  G : om
--> NN )
2413, 23mp1i 10 . . . . . . . 8  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  G : om --> NN )
25 simpr 110 . . . . . . . 8  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  y  e.  om )
2624, 25ffvelcdmd 5716 . . . . . . 7  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  ( G `  y )  e.  NN )
2721, 22, 26rspcdva 2882 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  -> DECID  ( G `  y
)  e.  A )
28 f1of1 5521 . . . . . . . . . 10  |-  ( `' G : NN -1-1-onto-> om  ->  `' G : NN -1-1-> om )
2915, 28ax-mp 5 . . . . . . . . 9  |-  `' G : NN -1-1-> om
30 simpll 527 . . . . . . . . 9  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  A  C_  NN )
31 f1elima 5842 . . . . . . . . 9  |-  ( ( `' G : NN -1-1-> om  /\  ( G `  y
)  e.  NN  /\  A  C_  NN )  -> 
( ( `' G `  ( G `  y
) )  e.  ( `' G " A )  <-> 
( G `  y
)  e.  A ) )
3229, 26, 30, 31mp3an2i 1355 . . . . . . . 8  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  (
( `' G `  ( G `  y ) )  e.  ( `' G " A )  <-> 
( G `  y
)  e.  A ) )
33 f1ocnvfv1 5846 . . . . . . . . . . 11  |-  ( ( G : om -1-1-onto-> NN  /\  y  e. 
om )  ->  ( `' G `  ( G `
 y ) )  =  y )
3413, 33mpan 424 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( `' G `  ( G `
 y ) )  =  y )
3534adantl 277 . . . . . . . . 9  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  ( `' G `  ( G `
 y ) )  =  y )
3635eleq1d 2274 . . . . . . . 8  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  (
( `' G `  ( G `  y ) )  e.  ( `' G " A )  <-> 
y  e.  ( `' G " A ) ) )
3732, 36bitr3d 190 . . . . . . 7  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  (
( G `  y
)  e.  A  <->  y  e.  ( `' G " A ) ) )
3837dcbid 840 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  ->  (DECID  ( G `  y )  e.  A  <-> DECID  y  e.  ( `' G " A ) ) )
3927, 38mpbid 147 . . . . 5  |-  ( ( ( A  C_  NN  /\ 
A. z  e.  NN DECID  z  e.  A )  /\  y  e.  om )  -> DECID  y  e.  ( `' G " A ) )
4039ralrimiva 2579 . . . 4  |-  ( ( A  C_  NN  /\  A. z  e.  NN DECID  z  e.  A
)  ->  A. y  e.  om DECID  y  e.  ( `' G " A ) )
41 ssomct 12816 . . . 4  |-  ( ( ( `' G " A )  C_  om  /\  A. y  e.  om DECID  y  e.  ( `' G " A ) )  ->  E. g 
g : om -onto-> (
( `' G " A ) 1o ) )
4219, 40, 41sylancr 414 . . 3  |-  ( ( A  C_  NN  /\  A. z  e.  NN DECID  z  e.  A
)  ->  E. g 
g : om -onto-> (
( `' G " A ) 1o ) )
433, 42sylan2b 287 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A
)  ->  E. g 
g : om -onto-> (
( `' G " A ) 1o ) )
44 nnex 9042 . . . . . 6  |-  NN  e.  _V
4544ssex 4181 . . . . 5  |-  ( A 
C_  NN  ->  A  e. 
_V )
46 f1ores 5537 . . . . . 6  |-  ( ( `' G : NN -1-1-> om  /\  A  C_  NN )  ->  ( `' G  |`  A ) : A -1-1-onto-> ( `' G " A ) )
4729, 46mpan 424 . . . . 5  |-  ( A 
C_  NN  ->  ( `' G  |`  A ) : A -1-1-onto-> ( `' G " A ) )
48 f1oeng 6848 . . . . 5  |-  ( ( A  e.  _V  /\  ( `' G  |`  A ) : A -1-1-onto-> ( `' G " A ) )  ->  A  ~~  ( `' G " A ) )
4945, 47, 48syl2anc 411 . . . 4  |-  ( A 
C_  NN  ->  A  ~~  ( `' G " A ) )
50 enct 12804 . . . 4  |-  ( A 
~~  ( `' G " A )  ->  ( E. f  f : om -onto-> ( A 1o )  <->  E. g  g : om -onto-> ( ( `' G " A ) 1o ) ) )
5149, 50syl 14 . . 3  |-  ( A 
C_  NN  ->  ( E. f  f : om -onto->
( A 1o )  <->  E. g  g : om -onto->
( ( `' G " A ) 1o ) ) )
5251adantr 276 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A
)  ->  ( E. f  f : om -onto->
( A 1o )  <->  E. g  g : om -onto->
( ( `' G " A ) 1o ) ) )
5343, 52mpbird 167 1  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A
)  ->  E. f 
f : om -onto-> ( A 1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   _Vcvv 2772    C_ wss 3166   class class class wbr 4044    |-> cmpt 4105   omcom 4638   `'ccnv 4674   ran crn 4676    |` cres 4677   "cima 4678   -->wf 5267   -1-1->wf1 5268   -onto->wfo 5269   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5944  freccfrec 6476   1oc1o 6495    ~~ cen 6825   ⊔ cdju 7139   1c1 7926    + caddc 7928   NNcn 9036   ZZcz 9372   ZZ>=cuz 9648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-1o 6502  df-er 6620  df-en 6828  df-dju 7140  df-inl 7149  df-inr 7150  df-case 7186  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649
This theorem is referenced by:  ssnnct  12818
  Copyright terms: Public domain W3C validator