ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1orescnv Unicode version

Theorem f1orescnv 5520
Description: The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008.)
Assertion
Ref Expression
f1orescnv  |-  ( ( Fun  `' F  /\  ( F  |`  R ) : R -1-1-onto-> P )  ->  ( `' F  |`  P ) : P -1-1-onto-> R )

Proof of Theorem f1orescnv
StepHypRef Expression
1 f1ocnv 5517 . . 3  |-  ( ( F  |`  R ) : R -1-1-onto-> P  ->  `' ( F  |`  R ) : P -1-1-onto-> R )
21adantl 277 . 2  |-  ( ( Fun  `' F  /\  ( F  |`  R ) : R -1-1-onto-> P )  ->  `' ( F  |`  R ) : P -1-1-onto-> R )
3 funcnvres 5331 . . . 4  |-  ( Fun  `' F  ->  `' ( F  |`  R )  =  ( `' F  |`  ( F " R
) ) )
4 df-ima 4676 . . . . . 6  |-  ( F
" R )  =  ran  ( F  |`  R )
5 dff1o5 5513 . . . . . . 7  |-  ( ( F  |`  R ) : R -1-1-onto-> P  <->  ( ( F  |`  R ) : R -1-1-> P  /\  ran  ( F  |`  R )  =  P ) )
65simprbi 275 . . . . . 6  |-  ( ( F  |`  R ) : R -1-1-onto-> P  ->  ran  ( F  |`  R )  =  P )
74, 6eqtrid 2241 . . . . 5  |-  ( ( F  |`  R ) : R -1-1-onto-> P  ->  ( F " R )  =  P )
87reseq2d 4946 . . . 4  |-  ( ( F  |`  R ) : R -1-1-onto-> P  ->  ( `' F  |`  ( F " R ) )  =  ( `' F  |`  P ) )
93, 8sylan9eq 2249 . . 3  |-  ( ( Fun  `' F  /\  ( F  |`  R ) : R -1-1-onto-> P )  ->  `' ( F  |`  R )  =  ( `' F  |`  P ) )
10 f1oeq1 5492 . . 3  |-  ( `' ( F  |`  R )  =  ( `' F  |`  P )  ->  ( `' ( F  |`  R ) : P -1-1-onto-> R  <->  ( `' F  |`  P ) : P -1-1-onto-> R ) )
119, 10syl 14 . 2  |-  ( ( Fun  `' F  /\  ( F  |`  R ) : R -1-1-onto-> P )  ->  ( `' ( F  |`  R ) : P -1-1-onto-> R  <->  ( `' F  |`  P ) : P -1-1-onto-> R ) )
122, 11mpbid 147 1  |-  ( ( Fun  `' F  /\  ( F  |`  R ) : R -1-1-onto-> P )  ->  ( `' F  |`  P ) : P -1-1-onto-> R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   `'ccnv 4662   ran crn 4664    |` cres 4665   "cima 4666   Fun wfun 5252   -1-1->wf1 5255   -1-1-onto->wf1o 5257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265
This theorem is referenced by:  f1oresrab  5727
  Copyright terms: Public domain W3C validator