Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1orescnv | Unicode version |
Description: The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008.) |
Ref | Expression |
---|---|
f1orescnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv 5445 | . . 3 | |
2 | 1 | adantl 275 | . 2 |
3 | funcnvres 5261 | . . . 4 | |
4 | df-ima 4617 | . . . . . 6 | |
5 | dff1o5 5441 | . . . . . . 7 | |
6 | 5 | simprbi 273 | . . . . . 6 |
7 | 4, 6 | syl5eq 2211 | . . . . 5 |
8 | 7 | reseq2d 4884 | . . . 4 |
9 | 3, 8 | sylan9eq 2219 | . . 3 |
10 | f1oeq1 5421 | . . 3 | |
11 | 9, 10 | syl 14 | . 2 |
12 | 2, 11 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 ccnv 4603 crn 4605 cres 4606 cima 4607 wfun 5182 wf1 5185 wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 |
This theorem is referenced by: f1oresrab 5650 |
Copyright terms: Public domain | W3C validator |