![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfiin3g | GIF version |
Description: Alternate definition of indexed intersection when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfiin3g | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiin2g 3946 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
2 | eqid 2193 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | rnmpt 4911 | . . 3 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
4 | 3 | inteqi 3875 | . 2 ⊢ ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
5 | 1, 4 | eqtr4di 2244 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 {cab 2179 ∀wral 2472 ∃wrex 2473 ∩ cint 3871 ∩ ciin 3914 ↦ cmpt 4091 ran crn 4661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-int 3872 df-iin 3916 df-br 4031 df-opab 4092 df-mpt 4093 df-cnv 4668 df-dm 4670 df-rn 4671 |
This theorem is referenced by: dfiin3 4923 riinint 4924 |
Copyright terms: Public domain | W3C validator |