ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0cld Unicode version

Theorem 0cld 11964
Description: The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.)
Assertion
Ref Expression
0cld  |-  ( J  e.  Top  ->  (/)  e.  (
Clsd `  J )
)

Proof of Theorem 0cld
StepHypRef Expression
1 dif0 3372 . . 3  |-  ( U. J  \  (/) )  =  U. J
21topopn 11859 . 2  |-  ( J  e.  Top  ->  ( U. J  \  (/) )  e.  J )
3 0ss 3340 . . 3  |-  (/)  C_  U. J
4 eqid 2095 . . . 4  |-  U. J  =  U. J
54iscld2 11956 . . 3  |-  ( ( J  e.  Top  /\  (/)  C_  U. J )  -> 
( (/)  e.  ( Clsd `  J )  <->  ( U. J  \  (/) )  e.  J
) )
63, 5mpan2 417 . 2  |-  ( J  e.  Top  ->  ( (/) 
e.  ( Clsd `  J
)  <->  ( U. J  \  (/) )  e.  J
) )
72, 6mpbird 166 1  |-  ( J  e.  Top  ->  (/)  e.  (
Clsd `  J )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 1445    \ cdif 3010    C_ wss 3013   (/)c0 3302   U.cuni 3675   ` cfv 5049   Topctop 11848   Clsdccld 11944
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-top 11849  df-cld 11947
This theorem is referenced by:  iuncld  11967  cls0  11985
  Copyright terms: Public domain W3C validator