ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0cld Unicode version

Theorem 0cld 12906
Description: The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.)
Assertion
Ref Expression
0cld  |-  ( J  e.  Top  ->  (/)  e.  (
Clsd `  J )
)

Proof of Theorem 0cld
StepHypRef Expression
1 dif0 3485 . . 3  |-  ( U. J  \  (/) )  =  U. J
21topopn 12800 . 2  |-  ( J  e.  Top  ->  ( U. J  \  (/) )  e.  J )
3 0ss 3453 . . 3  |-  (/)  C_  U. J
4 eqid 2170 . . . 4  |-  U. J  =  U. J
54iscld2 12898 . . 3  |-  ( ( J  e.  Top  /\  (/)  C_  U. J )  -> 
( (/)  e.  ( Clsd `  J )  <->  ( U. J  \  (/) )  e.  J
) )
63, 5mpan2 423 . 2  |-  ( J  e.  Top  ->  ( (/) 
e.  ( Clsd `  J
)  <->  ( U. J  \  (/) )  e.  J
) )
72, 6mpbird 166 1  |-  ( J  e.  Top  ->  (/)  e.  (
Clsd `  J )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2141    \ cdif 3118    C_ wss 3121   (/)c0 3414   U.cuni 3796   ` cfv 5198   Topctop 12789   Clsdccld 12886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-top 12790  df-cld 12889
This theorem is referenced by:  iuncld  12909  cls0  12927
  Copyright terms: Public domain W3C validator