| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmpropg | GIF version | ||
| Description: The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| dmpropg | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmsnopg 5159 | . . 3 ⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
| 2 | dmsnopg 5159 | . . 3 ⊢ (𝐷 ∈ 𝑊 → dom {〈𝐶, 𝐷〉} = {𝐶}) | |
| 3 | uneq12 3323 | . . 3 ⊢ ((dom {〈𝐴, 𝐵〉} = {𝐴} ∧ dom {〈𝐶, 𝐷〉} = {𝐶}) → (dom {〈𝐴, 𝐵〉} ∪ dom {〈𝐶, 𝐷〉}) = ({𝐴} ∪ {𝐶})) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (dom {〈𝐴, 𝐵〉} ∪ dom {〈𝐶, 𝐷〉}) = ({𝐴} ∪ {𝐶})) |
| 5 | df-pr 3641 | . . . 4 ⊢ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) | |
| 6 | 5 | dmeqi 4884 | . . 3 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = dom ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) |
| 7 | dmun 4890 | . . 3 ⊢ dom ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) = (dom {〈𝐴, 𝐵〉} ∪ dom {〈𝐶, 𝐷〉}) | |
| 8 | 6, 7 | eqtri 2227 | . 2 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = (dom {〈𝐴, 𝐵〉} ∪ dom {〈𝐶, 𝐷〉}) |
| 9 | df-pr 3641 | . 2 ⊢ {𝐴, 𝐶} = ({𝐴} ∪ {𝐶}) | |
| 10 | 4, 8, 9 | 3eqtr4g 2264 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∪ cun 3165 {csn 3634 {cpr 3635 〈cop 3637 dom cdm 4679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-dm 4689 |
| This theorem is referenced by: dmprop 5162 funtpg 5330 fnprg 5334 hashdmprop2dom 10996 structiedg0val 15683 |
| Copyright terms: Public domain | W3C validator |