| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dmpropg | GIF version | ||
| Description: The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| dmpropg | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dmsnopg 5141 | . . 3 ⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
| 2 | dmsnopg 5141 | . . 3 ⊢ (𝐷 ∈ 𝑊 → dom {〈𝐶, 𝐷〉} = {𝐶}) | |
| 3 | uneq12 3312 | . . 3 ⊢ ((dom {〈𝐴, 𝐵〉} = {𝐴} ∧ dom {〈𝐶, 𝐷〉} = {𝐶}) → (dom {〈𝐴, 𝐵〉} ∪ dom {〈𝐶, 𝐷〉}) = ({𝐴} ∪ {𝐶})) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (dom {〈𝐴, 𝐵〉} ∪ dom {〈𝐶, 𝐷〉}) = ({𝐴} ∪ {𝐶})) | 
| 5 | df-pr 3629 | . . . 4 ⊢ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) | |
| 6 | 5 | dmeqi 4867 | . . 3 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = dom ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) | 
| 7 | dmun 4873 | . . 3 ⊢ dom ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) = (dom {〈𝐴, 𝐵〉} ∪ dom {〈𝐶, 𝐷〉}) | |
| 8 | 6, 7 | eqtri 2217 | . 2 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = (dom {〈𝐴, 𝐵〉} ∪ dom {〈𝐶, 𝐷〉}) | 
| 9 | df-pr 3629 | . 2 ⊢ {𝐴, 𝐶} = ({𝐴} ∪ {𝐶}) | |
| 10 | 4, 8, 9 | 3eqtr4g 2254 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶}) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 {csn 3622 {cpr 3623 〈cop 3625 dom cdm 4663 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-dm 4673 | 
| This theorem is referenced by: dmprop 5144 funtpg 5309 fnprg 5313 | 
| Copyright terms: Public domain | W3C validator |