ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmpropg GIF version

Theorem dmpropg 5177
Description: The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmpropg ((𝐵𝑉𝐷𝑊) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶})

Proof of Theorem dmpropg
StepHypRef Expression
1 dmsnopg 5176 . . 3 (𝐵𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
2 dmsnopg 5176 . . 3 (𝐷𝑊 → dom {⟨𝐶, 𝐷⟩} = {𝐶})
3 uneq12 3333 . . 3 ((dom {⟨𝐴, 𝐵⟩} = {𝐴} ∧ dom {⟨𝐶, 𝐷⟩} = {𝐶}) → (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩}) = ({𝐴} ∪ {𝐶}))
41, 2, 3syl2an 289 . 2 ((𝐵𝑉𝐷𝑊) → (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩}) = ({𝐴} ∪ {𝐶}))
5 df-pr 3653 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
65dmeqi 4901 . . 3 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = dom ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
7 dmun 4907 . . 3 dom ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩})
86, 7eqtri 2230 . 2 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩})
9 df-pr 3653 . 2 {𝐴, 𝐶} = ({𝐴} ∪ {𝐶})
104, 8, 93eqtr4g 2267 1 ((𝐵𝑉𝐷𝑊) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  cun 3175  {csn 3646  {cpr 3647  cop 3649  dom cdm 4696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-dm 4706
This theorem is referenced by:  dmprop  5179  funtpg  5348  fnprg  5352  hashdmprop2dom  11033  structiedg0val  15806
  Copyright terms: Public domain W3C validator