![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmpropg | GIF version |
Description: The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
dmpropg | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnopg 5102 | . . 3 ⊢ (𝐵 ∈ 𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴}) | |
2 | dmsnopg 5102 | . . 3 ⊢ (𝐷 ∈ 𝑊 → dom {⟨𝐶, 𝐷⟩} = {𝐶}) | |
3 | uneq12 3286 | . . 3 ⊢ ((dom {⟨𝐴, 𝐵⟩} = {𝐴} ∧ dom {⟨𝐶, 𝐷⟩} = {𝐶}) → (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩}) = ({𝐴} ∪ {𝐶})) | |
4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩}) = ({𝐴} ∪ {𝐶})) |
5 | df-pr 3601 | . . . 4 ⊢ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) | |
6 | 5 | dmeqi 4830 | . . 3 ⊢ dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = dom ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) |
7 | dmun 4836 | . . 3 ⊢ dom ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩}) | |
8 | 6, 7 | eqtri 2198 | . 2 ⊢ dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩}) |
9 | df-pr 3601 | . 2 ⊢ {𝐴, 𝐶} = ({𝐴} ∪ {𝐶}) | |
10 | 4, 8, 9 | 3eqtr4g 2235 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∪ cun 3129 {csn 3594 {cpr 3595 ⟨cop 3597 dom cdm 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-dm 4638 |
This theorem is referenced by: dmprop 5105 funtpg 5269 fnprg 5273 |
Copyright terms: Public domain | W3C validator |