ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmpropg GIF version

Theorem dmpropg 5160
Description: The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmpropg ((𝐵𝑉𝐷𝑊) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶})

Proof of Theorem dmpropg
StepHypRef Expression
1 dmsnopg 5159 . . 3 (𝐵𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
2 dmsnopg 5159 . . 3 (𝐷𝑊 → dom {⟨𝐶, 𝐷⟩} = {𝐶})
3 uneq12 3323 . . 3 ((dom {⟨𝐴, 𝐵⟩} = {𝐴} ∧ dom {⟨𝐶, 𝐷⟩} = {𝐶}) → (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩}) = ({𝐴} ∪ {𝐶}))
41, 2, 3syl2an 289 . 2 ((𝐵𝑉𝐷𝑊) → (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩}) = ({𝐴} ∪ {𝐶}))
5 df-pr 3641 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
65dmeqi 4884 . . 3 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = dom ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
7 dmun 4890 . . 3 dom ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩})
86, 7eqtri 2227 . 2 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = (dom {⟨𝐴, 𝐵⟩} ∪ dom {⟨𝐶, 𝐷⟩})
9 df-pr 3641 . 2 {𝐴, 𝐶} = ({𝐴} ∪ {𝐶})
104, 8, 93eqtr4g 2264 1 ((𝐵𝑉𝐷𝑊) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  cun 3165  {csn 3634  {cpr 3635  cop 3637  dom cdm 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-dm 4689
This theorem is referenced by:  dmprop  5162  funtpg  5330  fnprg  5334  hashdmprop2dom  10996  structiedg0val  15683
  Copyright terms: Public domain W3C validator