ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fntp Unicode version

Theorem fntp 5340
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
fntp.1  |-  A  e. 
_V
fntp.2  |-  B  e. 
_V
fntp.3  |-  C  e. 
_V
fntp.4  |-  D  e. 
_V
fntp.5  |-  E  e. 
_V
fntp.6  |-  F  e. 
_V
Assertion
Ref Expression
fntp  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  Fn  { A ,  B ,  C } )

Proof of Theorem fntp
StepHypRef Expression
1 fntp.1 . . 3  |-  A  e. 
_V
2 fntp.2 . . 3  |-  B  e. 
_V
3 fntp.3 . . 3  |-  C  e. 
_V
4 fntp.4 . . 3  |-  D  e. 
_V
5 fntp.5 . . 3  |-  E  e. 
_V
6 fntp.6 . . 3  |-  F  e. 
_V
71, 2, 3, 4, 5, 6funtp 5336 . 2  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  Fun  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } )
84, 5, 6dmtpop 5167 . . 3  |-  dom  { <. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. }  =  { A ,  B ,  C }
98a1i 9 . 2  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  dom  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. }  =  { A ,  B ,  C }
)
10 df-fn 5283 . 2  |-  ( {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. }  Fn  { A ,  B ,  C }  <->  ( Fun  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  /\  dom  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. }  =  { A ,  B ,  C }
) )
117, 9, 10sylanbrc 417 1  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  Fn  { A ,  B ,  C } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2177    =/= wne 2377   _Vcvv 2773   {ctp 3640   <.cop 3641   dom cdm 4683   Fun wfun 5274    Fn wfn 5275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-tp 3646  df-op 3647  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-fun 5282  df-fn 5283
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator