ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fntp Unicode version

Theorem fntp 5057
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
fntp.1  |-  A  e. 
_V
fntp.2  |-  B  e. 
_V
fntp.3  |-  C  e. 
_V
fntp.4  |-  D  e. 
_V
fntp.5  |-  E  e. 
_V
fntp.6  |-  F  e. 
_V
Assertion
Ref Expression
fntp  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  Fn  { A ,  B ,  C } )

Proof of Theorem fntp
StepHypRef Expression
1 fntp.1 . . 3  |-  A  e. 
_V
2 fntp.2 . . 3  |-  B  e. 
_V
3 fntp.3 . . 3  |-  C  e. 
_V
4 fntp.4 . . 3  |-  D  e. 
_V
5 fntp.5 . . 3  |-  E  e. 
_V
6 fntp.6 . . 3  |-  F  e. 
_V
71, 2, 3, 4, 5, 6funtp 5053 . 2  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  Fun  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } )
84, 5, 6dmtpop 4893 . . 3  |-  dom  { <. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. }  =  { A ,  B ,  C }
98a1i 9 . 2  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  dom  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. }  =  { A ,  B ,  C }
)
10 df-fn 5005 . 2  |-  ( {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. }  Fn  { A ,  B ,  C }  <->  ( Fun  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  /\  dom  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. }  =  { A ,  B ,  C }
) )
117, 9, 10sylanbrc 408 1  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  Fn  { A ,  B ,  C } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 924    = wceq 1289    e. wcel 1438    =/= wne 2255   _Vcvv 2619   {ctp 3443   <.cop 3444   dom cdm 4428   Fun wfun 4996    Fn wfn 4997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-tp 3449  df-op 3450  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-fun 5004  df-fn 5005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator