ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fntp Unicode version

Theorem fntp 5377
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
fntp.1  |-  A  e. 
_V
fntp.2  |-  B  e. 
_V
fntp.3  |-  C  e. 
_V
fntp.4  |-  D  e. 
_V
fntp.5  |-  E  e. 
_V
fntp.6  |-  F  e. 
_V
Assertion
Ref Expression
fntp  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  Fn  { A ,  B ,  C } )

Proof of Theorem fntp
StepHypRef Expression
1 fntp.1 . . 3  |-  A  e. 
_V
2 fntp.2 . . 3  |-  B  e. 
_V
3 fntp.3 . . 3  |-  C  e. 
_V
4 fntp.4 . . 3  |-  D  e. 
_V
5 fntp.5 . . 3  |-  E  e. 
_V
6 fntp.6 . . 3  |-  F  e. 
_V
71, 2, 3, 4, 5, 6funtp 5373 . 2  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  Fun  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } )
84, 5, 6dmtpop 5203 . . 3  |-  dom  { <. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. }  =  { A ,  B ,  C }
98a1i 9 . 2  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  dom  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. }  =  { A ,  B ,  C }
)
10 df-fn 5320 . 2  |-  ( {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. }  Fn  { A ,  B ,  C }  <->  ( Fun  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  /\  dom  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. }  =  { A ,  B ,  C }
) )
117, 9, 10sylanbrc 417 1  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  Fn  { A ,  B ,  C } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   _Vcvv 2799   {ctp 3668   <.cop 3669   dom cdm 4718   Fun wfun 5311    Fn wfn 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-fun 5319  df-fn 5320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator