| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmtpop | GIF version | ||
| Description: The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| dmsnop.1 | ⊢ 𝐵 ∈ V |
| dmprop.1 | ⊢ 𝐷 ∈ V |
| dmtpop.1 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| dmtpop | ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = {𝐴, 𝐶, 𝐸} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 3674 | . . . 4 ⊢ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ {〈𝐸, 𝐹〉}) | |
| 2 | 1 | dmeqi 4924 | . . 3 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = dom ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ {〈𝐸, 𝐹〉}) |
| 3 | dmun 4930 | . . 3 ⊢ dom ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ {〈𝐸, 𝐹〉}) = (dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ dom {〈𝐸, 𝐹〉}) | |
| 4 | dmsnop.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 5 | dmprop.1 | . . . . 5 ⊢ 𝐷 ∈ V | |
| 6 | 4, 5 | dmprop 5203 | . . . 4 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶} |
| 7 | dmtpop.1 | . . . . 5 ⊢ 𝐹 ∈ V | |
| 8 | 7 | dmsnop 5202 | . . . 4 ⊢ dom {〈𝐸, 𝐹〉} = {𝐸} |
| 9 | 6, 8 | uneq12i 3356 | . . 3 ⊢ (dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ dom {〈𝐸, 𝐹〉}) = ({𝐴, 𝐶} ∪ {𝐸}) |
| 10 | 2, 3, 9 | 3eqtri 2254 | . 2 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = ({𝐴, 𝐶} ∪ {𝐸}) |
| 11 | df-tp 3674 | . 2 ⊢ {𝐴, 𝐶, 𝐸} = ({𝐴, 𝐶} ∪ {𝐸}) | |
| 12 | 10, 11 | eqtr4i 2253 | 1 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = {𝐴, 𝐶, 𝐸} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 {csn 3666 {cpr 3667 {ctp 3668 〈cop 3669 dom cdm 4719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-br 4084 df-dm 4729 |
| This theorem is referenced by: fntp 5378 |
| Copyright terms: Public domain | W3C validator |