ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnvsn Unicode version

Theorem cnvcnvsn 4983
Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn 4989, this does not need any sethood assumptions on  A and  B.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
cnvcnvsn  |-  `' `' { <. A ,  B >. }  =  `' { <. B ,  A >. }

Proof of Theorem cnvcnvsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 4885 . 2  |-  Rel  `' `' { <. A ,  B >. }
2 relcnv 4885 . 2  |-  Rel  `' { <. B ,  A >. }
3 vex 2661 . . . 4  |-  y  e. 
_V
4 vex 2661 . . . 4  |-  x  e. 
_V
53, 4opelcnv 4689 . . 3  |-  ( <.
y ,  x >.  e.  `' `' { <. A ,  B >. }  <->  <. x ,  y
>.  e.  `' { <. A ,  B >. } )
6 ancom 264 . . . . . 6  |-  ( ( y  =  A  /\  x  =  B )  <->  ( x  =  B  /\  y  =  A )
)
73, 4opth 4127 . . . . . 6  |-  ( <.
y ,  x >.  = 
<. A ,  B >.  <->  (
y  =  A  /\  x  =  B )
)
84, 3opth 4127 . . . . . 6  |-  ( <.
x ,  y >.  =  <. B ,  A >.  <-> 
( x  =  B  /\  y  =  A ) )
96, 7, 83bitr4i 211 . . . . 5  |-  ( <.
y ,  x >.  = 
<. A ,  B >.  <->  <. x ,  y >.  =  <. B ,  A >. )
103, 4opex 4119 . . . . . 6  |-  <. y ,  x >.  e.  _V
1110elsn 3511 . . . . 5  |-  ( <.
y ,  x >.  e. 
{ <. A ,  B >. }  <->  <. y ,  x >.  =  <. A ,  B >. )
124, 3opex 4119 . . . . . 6  |-  <. x ,  y >.  e.  _V
1312elsn 3511 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. B ,  A >. }  <->  <. x ,  y
>.  =  <. B ,  A >. )
149, 11, 133bitr4i 211 . . . 4  |-  ( <.
y ,  x >.  e. 
{ <. A ,  B >. }  <->  <. x ,  y
>.  e.  { <. B ,  A >. } )
154, 3opelcnv 4689 . . . 4  |-  ( <.
x ,  y >.  e.  `' { <. A ,  B >. }  <->  <. y ,  x >.  e.  { <. A ,  B >. } )
163, 4opelcnv 4689 . . . 4  |-  ( <.
y ,  x >.  e.  `' { <. B ,  A >. }  <->  <. x ,  y
>.  e.  { <. B ,  A >. } )
1714, 15, 163bitr4i 211 . . 3  |-  ( <.
x ,  y >.  e.  `' { <. A ,  B >. }  <->  <. y ,  x >.  e.  `' { <. B ,  A >. } )
185, 17bitri 183 . 2  |-  ( <.
y ,  x >.  e.  `' `' { <. A ,  B >. }  <->  <. y ,  x >.  e.  `' { <. B ,  A >. } )
191, 2, 18eqrelriiv 4601 1  |-  `' `' { <. A ,  B >. }  =  `' { <. B ,  A >. }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1314    e. wcel 1463   {csn 3495   <.cop 3498   `'ccnv 4506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-xp 4513  df-rel 4514  df-cnv 4515
This theorem is referenced by:  rnsnopg  4985  cnvsn  4989
  Copyright terms: Public domain W3C validator