ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnvsn Unicode version

Theorem cnvcnvsn 5107
Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn 5113, this does not need any sethood assumptions on  A and  B.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
cnvcnvsn  |-  `' `' { <. A ,  B >. }  =  `' { <. B ,  A >. }

Proof of Theorem cnvcnvsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5008 . 2  |-  Rel  `' `' { <. A ,  B >. }
2 relcnv 5008 . 2  |-  Rel  `' { <. B ,  A >. }
3 vex 2742 . . . 4  |-  y  e. 
_V
4 vex 2742 . . . 4  |-  x  e. 
_V
53, 4opelcnv 4811 . . 3  |-  ( <.
y ,  x >.  e.  `' `' { <. A ,  B >. }  <->  <. x ,  y
>.  e.  `' { <. A ,  B >. } )
6 ancom 266 . . . . . 6  |-  ( ( y  =  A  /\  x  =  B )  <->  ( x  =  B  /\  y  =  A )
)
73, 4opth 4239 . . . . . 6  |-  ( <.
y ,  x >.  = 
<. A ,  B >.  <->  (
y  =  A  /\  x  =  B )
)
84, 3opth 4239 . . . . . 6  |-  ( <.
x ,  y >.  =  <. B ,  A >.  <-> 
( x  =  B  /\  y  =  A ) )
96, 7, 83bitr4i 212 . . . . 5  |-  ( <.
y ,  x >.  = 
<. A ,  B >.  <->  <. x ,  y >.  =  <. B ,  A >. )
103, 4opex 4231 . . . . . 6  |-  <. y ,  x >.  e.  _V
1110elsn 3610 . . . . 5  |-  ( <.
y ,  x >.  e. 
{ <. A ,  B >. }  <->  <. y ,  x >.  =  <. A ,  B >. )
124, 3opex 4231 . . . . . 6  |-  <. x ,  y >.  e.  _V
1312elsn 3610 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. B ,  A >. }  <->  <. x ,  y
>.  =  <. B ,  A >. )
149, 11, 133bitr4i 212 . . . 4  |-  ( <.
y ,  x >.  e. 
{ <. A ,  B >. }  <->  <. x ,  y
>.  e.  { <. B ,  A >. } )
154, 3opelcnv 4811 . . . 4  |-  ( <.
x ,  y >.  e.  `' { <. A ,  B >. }  <->  <. y ,  x >.  e.  { <. A ,  B >. } )
163, 4opelcnv 4811 . . . 4  |-  ( <.
y ,  x >.  e.  `' { <. B ,  A >. }  <->  <. x ,  y
>.  e.  { <. B ,  A >. } )
1714, 15, 163bitr4i 212 . . 3  |-  ( <.
x ,  y >.  e.  `' { <. A ,  B >. }  <->  <. y ,  x >.  e.  `' { <. B ,  A >. } )
185, 17bitri 184 . 2  |-  ( <.
y ,  x >.  e.  `' `' { <. A ,  B >. }  <->  <. y ,  x >.  e.  `' { <. B ,  A >. } )
191, 2, 18eqrelriiv 4722 1  |-  `' `' { <. A ,  B >. }  =  `' { <. B ,  A >. }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353    e. wcel 2148   {csn 3594   <.cop 3597   `'ccnv 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636
This theorem is referenced by:  rnsnopg  5109  cnvsn  5113
  Copyright terms: Public domain W3C validator