ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnvsn Unicode version

Theorem cnvcnvsn 5146
Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn 5152, this does not need any sethood assumptions on  A and  B.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
cnvcnvsn  |-  `' `' { <. A ,  B >. }  =  `' { <. B ,  A >. }

Proof of Theorem cnvcnvsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5047 . 2  |-  Rel  `' `' { <. A ,  B >. }
2 relcnv 5047 . 2  |-  Rel  `' { <. B ,  A >. }
3 vex 2766 . . . 4  |-  y  e. 
_V
4 vex 2766 . . . 4  |-  x  e. 
_V
53, 4opelcnv 4848 . . 3  |-  ( <.
y ,  x >.  e.  `' `' { <. A ,  B >. }  <->  <. x ,  y
>.  e.  `' { <. A ,  B >. } )
6 ancom 266 . . . . . 6  |-  ( ( y  =  A  /\  x  =  B )  <->  ( x  =  B  /\  y  =  A )
)
73, 4opth 4270 . . . . . 6  |-  ( <.
y ,  x >.  = 
<. A ,  B >.  <->  (
y  =  A  /\  x  =  B )
)
84, 3opth 4270 . . . . . 6  |-  ( <.
x ,  y >.  =  <. B ,  A >.  <-> 
( x  =  B  /\  y  =  A ) )
96, 7, 83bitr4i 212 . . . . 5  |-  ( <.
y ,  x >.  = 
<. A ,  B >.  <->  <. x ,  y >.  =  <. B ,  A >. )
103, 4opex 4262 . . . . . 6  |-  <. y ,  x >.  e.  _V
1110elsn 3638 . . . . 5  |-  ( <.
y ,  x >.  e. 
{ <. A ,  B >. }  <->  <. y ,  x >.  =  <. A ,  B >. )
124, 3opex 4262 . . . . . 6  |-  <. x ,  y >.  e.  _V
1312elsn 3638 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. B ,  A >. }  <->  <. x ,  y
>.  =  <. B ,  A >. )
149, 11, 133bitr4i 212 . . . 4  |-  ( <.
y ,  x >.  e. 
{ <. A ,  B >. }  <->  <. x ,  y
>.  e.  { <. B ,  A >. } )
154, 3opelcnv 4848 . . . 4  |-  ( <.
x ,  y >.  e.  `' { <. A ,  B >. }  <->  <. y ,  x >.  e.  { <. A ,  B >. } )
163, 4opelcnv 4848 . . . 4  |-  ( <.
y ,  x >.  e.  `' { <. B ,  A >. }  <->  <. x ,  y
>.  e.  { <. B ,  A >. } )
1714, 15, 163bitr4i 212 . . 3  |-  ( <.
x ,  y >.  e.  `' { <. A ,  B >. }  <->  <. y ,  x >.  e.  `' { <. B ,  A >. } )
185, 17bitri 184 . 2  |-  ( <.
y ,  x >.  e.  `' `' { <. A ,  B >. }  <->  <. y ,  x >.  e.  `' { <. B ,  A >. } )
191, 2, 18eqrelriiv 4757 1  |-  `' `' { <. A ,  B >. }  =  `' { <. B ,  A >. }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2167   {csn 3622   <.cop 3625   `'ccnv 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671
This theorem is referenced by:  rnsnopg  5148  cnvsn  5152
  Copyright terms: Public domain W3C validator