ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmv Unicode version

Theorem dmv 4820
Description: The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.)
Assertion
Ref Expression
dmv  |-  dom  _V  =  _V

Proof of Theorem dmv
StepHypRef Expression
1 ssv 3164 . 2  |-  dom  _V  C_ 
_V
2 dmi 4819 . . 3  |-  dom  _I  =  _V
3 ssv 3164 . . . 4  |-  _I  C_  _V
4 dmss 4803 . . . 4  |-  (  _I  C_  _V  ->  dom  _I  C_  dom  _V )
53, 4ax-mp 5 . . 3  |-  dom  _I  C_ 
dom  _V
62, 5eqsstrri 3175 . 2  |-  _V  C_  dom  _V
71, 6eqssi 3158 1  |-  dom  _V  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1343   _Vcvv 2726    C_ wss 3116    _I cid 4266   dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-dm 4614
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator