ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmv Unicode version

Theorem dmv 4845
Description: The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.)
Assertion
Ref Expression
dmv  |-  dom  _V  =  _V

Proof of Theorem dmv
StepHypRef Expression
1 ssv 3179 . 2  |-  dom  _V  C_ 
_V
2 dmi 4844 . . 3  |-  dom  _I  =  _V
3 ssv 3179 . . . 4  |-  _I  C_  _V
4 dmss 4828 . . . 4  |-  (  _I  C_  _V  ->  dom  _I  C_  dom  _V )
53, 4ax-mp 5 . . 3  |-  dom  _I  C_ 
dom  _V
62, 5eqsstrri 3190 . 2  |-  _V  C_  dom  _V
71, 6eqssi 3173 1  |-  dom  _V  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1353   _Vcvv 2739    C_ wss 3131    _I cid 4290   dom cdm 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-dm 4638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator