ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrri Unicode version

Theorem eqsstrri 3175
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.)
Hypotheses
Ref Expression
eqsstr3.1  |-  B  =  A
eqsstr3.2  |-  B  C_  C
Assertion
Ref Expression
eqsstrri  |-  A  C_  C

Proof of Theorem eqsstrri
StepHypRef Expression
1 eqsstr3.1 . . 3  |-  B  =  A
21eqcomi 2169 . 2  |-  A  =  B
3 eqsstr3.2 . 2  |-  B  C_  C
42, 3eqsstri 3174 1  |-  A  C_  C
Colors of variables: wff set class
Syntax hints:    = wceq 1343    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  inss2  3343  dmv  4820  resasplitss  5367  ofrfval  6058  ofvalg  6059  ofrval  6060  off  6062  ofres  6064  ofco  6068  dftpos4  6231  smores2  6262  caseinj  7054  djuinj  7071  bcm1k  10673  bcpasc  10679
  Copyright terms: Public domain W3C validator