![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqsstrri | Unicode version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.) |
Ref | Expression |
---|---|
eqsstr3.1 |
![]() ![]() ![]() ![]() |
eqsstr3.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqsstrri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstr3.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2197 |
. 2
![]() ![]() ![]() ![]() |
3 | eqsstr3.2 |
. 2
![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqsstri 3211 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: inss2 3380 dmv 4878 resasplitss 5433 ofrfval 6139 ofvalg 6140 ofrval 6141 off 6143 ofres 6145 ofco 6149 dftpos4 6316 smores2 6347 caseinj 7148 djuinj 7165 bcm1k 10831 bcpasc 10837 nninfctlemfo 12177 |
Copyright terms: Public domain | W3C validator |