ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrri Unicode version

Theorem eqsstrri 3234
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.)
Hypotheses
Ref Expression
eqsstr3.1  |-  B  =  A
eqsstr3.2  |-  B  C_  C
Assertion
Ref Expression
eqsstrri  |-  A  C_  C

Proof of Theorem eqsstrri
StepHypRef Expression
1 eqsstr3.1 . . 3  |-  B  =  A
21eqcomi 2211 . 2  |-  A  =  B
3 eqsstr3.2 . 2  |-  B  C_  C
42, 3eqsstri 3233 1  |-  A  C_  C
Colors of variables: wff set class
Syntax hints:    = wceq 1373    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187
This theorem is referenced by:  inss2  3402  dmv  4913  resasplitss  5477  ofrfval  6190  ofvalg  6191  ofrval  6192  off  6194  ofres  6196  ofco  6200  dftpos4  6372  smores2  6403  caseinj  7217  djuinj  7234  bcm1k  10942  bcpasc  10948  nninfctlemfo  12476
  Copyright terms: Public domain W3C validator