ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrri Unicode version

Theorem eqsstrri 3190
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.)
Hypotheses
Ref Expression
eqsstr3.1  |-  B  =  A
eqsstr3.2  |-  B  C_  C
Assertion
Ref Expression
eqsstrri  |-  A  C_  C

Proof of Theorem eqsstrri
StepHypRef Expression
1 eqsstr3.1 . . 3  |-  B  =  A
21eqcomi 2181 . 2  |-  A  =  B
3 eqsstr3.2 . 2  |-  B  C_  C
42, 3eqsstri 3189 1  |-  A  C_  C
Colors of variables: wff set class
Syntax hints:    = wceq 1353    C_ wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3137  df-ss 3144
This theorem is referenced by:  inss2  3358  dmv  4845  resasplitss  5397  ofrfval  6094  ofvalg  6095  ofrval  6096  off  6098  ofres  6100  ofco  6104  dftpos4  6267  smores2  6298  caseinj  7091  djuinj  7108  bcm1k  10743  bcpasc  10749
  Copyright terms: Public domain W3C validator