| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmv | GIF version | ||
| Description: The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.) |
| Ref | Expression |
|---|---|
| dmv | ⊢ dom V = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3205 | . 2 ⊢ dom V ⊆ V | |
| 2 | dmi 4881 | . . 3 ⊢ dom I = V | |
| 3 | ssv 3205 | . . . 4 ⊢ I ⊆ V | |
| 4 | dmss 4865 | . . . 4 ⊢ ( I ⊆ V → dom I ⊆ dom V) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ dom I ⊆ dom V |
| 6 | 2, 5 | eqsstrri 3216 | . 2 ⊢ V ⊆ dom V |
| 7 | 1, 6 | eqssi 3199 | 1 ⊢ dom V = V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 Vcvv 2763 ⊆ wss 3157 I cid 4323 dom cdm 4663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-dm 4673 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |