ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldmrexrn Unicode version

Theorem eldmrexrn 5775
Description: For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
eldmrexrn  |-  ( Fun 
F  ->  ( Y  e.  dom  F  ->  E. x  e.  ran  F  x  =  ( F `  Y
) ) )
Distinct variable groups:    x, F    x, Y

Proof of Theorem eldmrexrn
StepHypRef Expression
1 fvelrn 5765 . . 3  |-  ( ( Fun  F  /\  Y  e.  dom  F )  -> 
( F `  Y
)  e.  ran  F
)
2 eqid 2229 . . 3  |-  ( F `
 Y )  =  ( F `  Y
)
3 eqeq1 2236 . . . 4  |-  ( x  =  ( F `  Y )  ->  (
x  =  ( F `
 Y )  <->  ( F `  Y )  =  ( F `  Y ) ) )
43rspcev 2907 . . 3  |-  ( ( ( F `  Y
)  e.  ran  F  /\  ( F `  Y
)  =  ( F `
 Y ) )  ->  E. x  e.  ran  F  x  =  ( F `
 Y ) )
51, 2, 4sylancl 413 . 2  |-  ( ( Fun  F  /\  Y  e.  dom  F )  ->  E. x  e.  ran  F  x  =  ( F `
 Y ) )
65ex 115 1  |-  ( Fun 
F  ->  ( Y  e.  dom  F  ->  E. x  e.  ran  F  x  =  ( F `  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   E.wrex 2509   dom cdm 4718   ran crn 4719   Fun wfun 5311   ` cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator