ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldmrexrn Unicode version

Theorem eldmrexrn 5672
Description: For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
eldmrexrn  |-  ( Fun 
F  ->  ( Y  e.  dom  F  ->  E. x  e.  ran  F  x  =  ( F `  Y
) ) )
Distinct variable groups:    x, F    x, Y

Proof of Theorem eldmrexrn
StepHypRef Expression
1 fvelrn 5662 . . 3  |-  ( ( Fun  F  /\  Y  e.  dom  F )  -> 
( F `  Y
)  e.  ran  F
)
2 eqid 2188 . . 3  |-  ( F `
 Y )  =  ( F `  Y
)
3 eqeq1 2195 . . . 4  |-  ( x  =  ( F `  Y )  ->  (
x  =  ( F `
 Y )  <->  ( F `  Y )  =  ( F `  Y ) ) )
43rspcev 2855 . . 3  |-  ( ( ( F `  Y
)  e.  ran  F  /\  ( F `  Y
)  =  ( F `
 Y ) )  ->  E. x  e.  ran  F  x  =  ( F `
 Y ) )
51, 2, 4sylancl 413 . 2  |-  ( ( Fun  F  /\  Y  e.  dom  F )  ->  E. x  e.  ran  F  x  =  ( F `
 Y ) )
65ex 115 1  |-  ( Fun 
F  ->  ( Y  e.  dom  F  ->  E. x  e.  ran  F  x  =  ( F `  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2159   E.wrex 2468   dom cdm 4640   ran crn 4641   Fun wfun 5224   ` cfv 5230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-rex 2473  df-v 2753  df-sbc 2977  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-br 4018  df-opab 4079  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-iota 5192  df-fun 5232  df-fn 5233  df-fv 5238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator