ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldmrexrn Unicode version

Theorem eldmrexrn 5621
Description: For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
eldmrexrn  |-  ( Fun 
F  ->  ( Y  e.  dom  F  ->  E. x  e.  ran  F  x  =  ( F `  Y
) ) )
Distinct variable groups:    x, F    x, Y

Proof of Theorem eldmrexrn
StepHypRef Expression
1 fvelrn 5611 . . 3  |-  ( ( Fun  F  /\  Y  e.  dom  F )  -> 
( F `  Y
)  e.  ran  F
)
2 eqid 2164 . . 3  |-  ( F `
 Y )  =  ( F `  Y
)
3 eqeq1 2171 . . . 4  |-  ( x  =  ( F `  Y )  ->  (
x  =  ( F `
 Y )  <->  ( F `  Y )  =  ( F `  Y ) ) )
43rspcev 2826 . . 3  |-  ( ( ( F `  Y
)  e.  ran  F  /\  ( F `  Y
)  =  ( F `
 Y ) )  ->  E. x  e.  ran  F  x  =  ( F `
 Y ) )
51, 2, 4sylancl 410 . 2  |-  ( ( Fun  F  /\  Y  e.  dom  F )  ->  E. x  e.  ran  F  x  =  ( F `
 Y ) )
65ex 114 1  |-  ( Fun 
F  ->  ( Y  e.  dom  F  ->  E. x  e.  ran  F  x  =  ( F `  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135   E.wrex 2443   dom cdm 4599   ran crn 4600   Fun wfun 5177   ` cfv 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2724  df-sbc 2948  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-br 3978  df-opab 4039  df-id 4266  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-iota 5148  df-fun 5185  df-fn 5186  df-fv 5191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator