ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldmrexrn Unicode version

Theorem eldmrexrn 5569
Description: For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
eldmrexrn  |-  ( Fun 
F  ->  ( Y  e.  dom  F  ->  E. x  e.  ran  F  x  =  ( F `  Y
) ) )
Distinct variable groups:    x, F    x, Y

Proof of Theorem eldmrexrn
StepHypRef Expression
1 fvelrn 5559 . . 3  |-  ( ( Fun  F  /\  Y  e.  dom  F )  -> 
( F `  Y
)  e.  ran  F
)
2 eqid 2140 . . 3  |-  ( F `
 Y )  =  ( F `  Y
)
3 eqeq1 2147 . . . 4  |-  ( x  =  ( F `  Y )  ->  (
x  =  ( F `
 Y )  <->  ( F `  Y )  =  ( F `  Y ) ) )
43rspcev 2793 . . 3  |-  ( ( ( F `  Y
)  e.  ran  F  /\  ( F `  Y
)  =  ( F `
 Y ) )  ->  E. x  e.  ran  F  x  =  ( F `
 Y ) )
51, 2, 4sylancl 410 . 2  |-  ( ( Fun  F  /\  Y  e.  dom  F )  ->  E. x  e.  ran  F  x  =  ( F `
 Y ) )
65ex 114 1  |-  ( Fun 
F  ->  ( Y  e.  dom  F  ->  E. x  e.  ran  F  x  =  ( F `  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   E.wrex 2418   dom cdm 4547   ran crn 4548   Fun wfun 5125   ` cfv 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-fv 5139
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator