ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvelrn Unicode version

Theorem fvelrn 5517
Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
fvelrn  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  ran  F
)

Proof of Theorem fvelrn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2178 . . . . 5  |-  ( x  =  A  ->  (
x  e.  dom  F  <->  A  e.  dom  F ) )
21anbi2d 457 . . . 4  |-  ( x  =  A  ->  (
( Fun  F  /\  x  e.  dom  F )  <-> 
( Fun  F  /\  A  e.  dom  F ) ) )
3 fveq2 5387 . . . . 5  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
43eleq1d 2184 . . . 4  |-  ( x  =  A  ->  (
( F `  x
)  e.  ran  F  <->  ( F `  A )  e.  ran  F ) )
52, 4imbi12d 233 . . 3  |-  ( x  =  A  ->  (
( ( Fun  F  /\  x  e.  dom  F )  ->  ( F `  x )  e.  ran  F )  <->  ( ( Fun 
F  /\  A  e.  dom  F )  ->  ( F `  A )  e.  ran  F ) ) )
6 funfvop 5498 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  <. x ,  ( F `
 x ) >.  e.  F )
7 vex 2661 . . . . . 6  |-  x  e. 
_V
8 opeq1 3673 . . . . . . 7  |-  ( y  =  x  ->  <. y ,  ( F `  x ) >.  =  <. x ,  ( F `  x ) >. )
98eleq1d 2184 . . . . . 6  |-  ( y  =  x  ->  ( <. y ,  ( F `
 x ) >.  e.  F  <->  <. x ,  ( F `  x )
>.  e.  F ) )
107, 9spcev 2752 . . . . 5  |-  ( <.
x ,  ( F `
 x ) >.  e.  F  ->  E. y <. y ,  ( F `
 x ) >.  e.  F )
116, 10syl 14 . . . 4  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  E. y <. y ,  ( F `  x )
>.  e.  F )
12 funfvex 5404 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
13 elrn2g 4697 . . . . 5  |-  ( ( F `  x )  e.  _V  ->  (
( F `  x
)  e.  ran  F  <->  E. y <. y ,  ( F `  x )
>.  e.  F ) )
1412, 13syl 14 . . . 4  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  e.  ran  F  <->  E. y <. y ,  ( F `  x )
>.  e.  F ) )
1511, 14mpbird 166 . . 3  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  ran  F
)
165, 15vtoclg 2718 . 2  |-  ( A  e.  dom  F  -> 
( ( Fun  F  /\  A  e.  dom  F )  ->  ( F `  A )  e.  ran  F ) )
1716anabsi7 553 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  ran  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314   E.wex 1451    e. wcel 1463   _Vcvv 2658   <.cop 3498   dom cdm 4507   ran crn 4508   Fun wfun 5085   ` cfv 5091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-sbc 2881  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-iota 5056  df-fun 5093  df-fn 5094  df-fv 5099
This theorem is referenced by:  fnfvelrn  5518  eldmrexrn  5527  funfvima  5615  elunirn  5633  frecuzrdgdomlem  10141  frecuzrdgsuctlem  10147
  Copyright terms: Public domain W3C validator