ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvelrn Unicode version

Theorem fvelrn 5711
Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
fvelrn  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  ran  F
)

Proof of Theorem fvelrn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2268 . . . . 5  |-  ( x  =  A  ->  (
x  e.  dom  F  <->  A  e.  dom  F ) )
21anbi2d 464 . . . 4  |-  ( x  =  A  ->  (
( Fun  F  /\  x  e.  dom  F )  <-> 
( Fun  F  /\  A  e.  dom  F ) ) )
3 fveq2 5576 . . . . 5  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
43eleq1d 2274 . . . 4  |-  ( x  =  A  ->  (
( F `  x
)  e.  ran  F  <->  ( F `  A )  e.  ran  F ) )
52, 4imbi12d 234 . . 3  |-  ( x  =  A  ->  (
( ( Fun  F  /\  x  e.  dom  F )  ->  ( F `  x )  e.  ran  F )  <->  ( ( Fun 
F  /\  A  e.  dom  F )  ->  ( F `  A )  e.  ran  F ) ) )
6 funfvop 5692 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  <. x ,  ( F `
 x ) >.  e.  F )
7 vex 2775 . . . . . 6  |-  x  e. 
_V
8 opeq1 3819 . . . . . . 7  |-  ( y  =  x  ->  <. y ,  ( F `  x ) >.  =  <. x ,  ( F `  x ) >. )
98eleq1d 2274 . . . . . 6  |-  ( y  =  x  ->  ( <. y ,  ( F `
 x ) >.  e.  F  <->  <. x ,  ( F `  x )
>.  e.  F ) )
107, 9spcev 2868 . . . . 5  |-  ( <.
x ,  ( F `
 x ) >.  e.  F  ->  E. y <. y ,  ( F `
 x ) >.  e.  F )
116, 10syl 14 . . . 4  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  E. y <. y ,  ( F `  x )
>.  e.  F )
12 funfvex 5593 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
13 elrn2g 4868 . . . . 5  |-  ( ( F `  x )  e.  _V  ->  (
( F `  x
)  e.  ran  F  <->  E. y <. y ,  ( F `  x )
>.  e.  F ) )
1412, 13syl 14 . . . 4  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  e.  ran  F  <->  E. y <. y ,  ( F `  x )
>.  e.  F ) )
1511, 14mpbird 167 . . 3  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  ran  F
)
165, 15vtoclg 2833 . 2  |-  ( A  e.  dom  F  -> 
( ( Fun  F  /\  A  e.  dom  F )  ->  ( F `  A )  e.  ran  F ) )
1716anabsi7 581 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  ran  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772   <.cop 3636   dom cdm 4675   ran crn 4676   Fun wfun 5265   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279
This theorem is referenced by:  fnfvelrn  5712  eldmrexrn  5721  funfvima  5816  elunirn  5835  frecuzrdgdomlem  10562  frecuzrdgsuctlem  10568  gsumpropd2  13225  iedgedgg  15655
  Copyright terms: Public domain W3C validator