Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldmrexrn GIF version

Theorem eldmrexrn 5561
 Description: For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
eldmrexrn (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑌

Proof of Theorem eldmrexrn
StepHypRef Expression
1 fvelrn 5551 . . 3 ((Fun 𝐹𝑌 ∈ dom 𝐹) → (𝐹𝑌) ∈ ran 𝐹)
2 eqid 2139 . . 3 (𝐹𝑌) = (𝐹𝑌)
3 eqeq1 2146 . . . 4 (𝑥 = (𝐹𝑌) → (𝑥 = (𝐹𝑌) ↔ (𝐹𝑌) = (𝐹𝑌)))
43rspcev 2789 . . 3 (((𝐹𝑌) ∈ ran 𝐹 ∧ (𝐹𝑌) = (𝐹𝑌)) → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌))
51, 2, 4sylancl 409 . 2 ((Fun 𝐹𝑌 ∈ dom 𝐹) → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌))
65ex 114 1 (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1331   ∈ wcel 1480  ∃wrex 2417  dom cdm 4539  ran crn 4540  Fun wfun 5117  ‘cfv 5123 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator