Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldmrexrn | GIF version |
Description: For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.) |
Ref | Expression |
---|---|
eldmrexrn | ⊢ (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelrn 5616 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑌 ∈ dom 𝐹) → (𝐹‘𝑌) ∈ ran 𝐹) | |
2 | eqid 2165 | . . 3 ⊢ (𝐹‘𝑌) = (𝐹‘𝑌) | |
3 | eqeq1 2172 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑌) → (𝑥 = (𝐹‘𝑌) ↔ (𝐹‘𝑌) = (𝐹‘𝑌))) | |
4 | 3 | rspcev 2830 | . . 3 ⊢ (((𝐹‘𝑌) ∈ ran 𝐹 ∧ (𝐹‘𝑌) = (𝐹‘𝑌)) → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌)) |
5 | 1, 2, 4 | sylancl 410 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑌 ∈ dom 𝐹) → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌)) |
6 | 5 | ex 114 | 1 ⊢ (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 dom cdm 4604 ran crn 4605 Fun wfun 5182 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |