ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elimag Unicode version

Theorem elimag 4957
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.)
Assertion
Ref Expression
elimag  |-  ( A  e.  V  ->  ( A  e.  ( B " C )  <->  E. x  e.  C  x B A ) )
Distinct variable groups:    x, A    x, B    x, C
Allowed substitution hint:    V( x)

Proof of Theorem elimag
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq2 3993 . . 3  |-  ( y  =  A  ->  (
x B y  <->  x B A ) )
21rexbidv 2471 . 2  |-  ( y  =  A  ->  ( E. x  e.  C  x B y  <->  E. x  e.  C  x B A ) )
3 dfima2 4955 . 2  |-  ( B
" C )  =  { y  |  E. x  e.  C  x B y }
42, 3elab2g 2877 1  |-  ( A  e.  V  ->  ( A  e.  ( B " C )  <->  E. x  e.  C  x B A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141   E.wrex 2449   class class class wbr 3989   "cima 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by:  elima  4958  fvelima  5548  ecexr  6518
  Copyright terms: Public domain W3C validator