ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elimag Unicode version

Theorem elimag 4950
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.)
Assertion
Ref Expression
elimag  |-  ( A  e.  V  ->  ( A  e.  ( B " C )  <->  E. x  e.  C  x B A ) )
Distinct variable groups:    x, A    x, B    x, C
Allowed substitution hint:    V( x)

Proof of Theorem elimag
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq2 3986 . . 3  |-  ( y  =  A  ->  (
x B y  <->  x B A ) )
21rexbidv 2467 . 2  |-  ( y  =  A  ->  ( E. x  e.  C  x B y  <->  E. x  e.  C  x B A ) )
3 dfima2 4948 . 2  |-  ( B
" C )  =  { y  |  E. x  e.  C  x B y }
42, 3elab2g 2873 1  |-  ( A  e.  V  ->  ( A  e.  ( B " C )  <->  E. x  e.  C  x B A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2445   class class class wbr 3982   "cima 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617
This theorem is referenced by:  elima  4951  fvelima  5538  ecexr  6506
  Copyright terms: Public domain W3C validator