ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elimag Unicode version

Theorem elimag 5071
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.)
Assertion
Ref Expression
elimag  |-  ( A  e.  V  ->  ( A  e.  ( B " C )  <->  E. x  e.  C  x B A ) )
Distinct variable groups:    x, A    x, B    x, C
Allowed substitution hint:    V( x)

Proof of Theorem elimag
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq2 4086 . . 3  |-  ( y  =  A  ->  (
x B y  <->  x B A ) )
21rexbidv 2531 . 2  |-  ( y  =  A  ->  ( E. x  e.  C  x B y  <->  E. x  e.  C  x B A ) )
3 dfima2 5069 . 2  |-  ( B
" C )  =  { y  |  E. x  e.  C  x B y }
42, 3elab2g 2950 1  |-  ( A  e.  V  ->  ( A  e.  ( B " C )  <->  E. x  e.  C  x B A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4082   "cima 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731
This theorem is referenced by:  elima  5072  elrelimasn  5093  fvelima  5684  ecexr  6683
  Copyright terms: Public domain W3C validator