ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elimag GIF version

Theorem elimag 5048
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.)
Assertion
Ref Expression
elimag (𝐴𝑉 → (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elimag
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 4066 . . 3 (𝑦 = 𝐴 → (𝑥𝐵𝑦𝑥𝐵𝐴))
21rexbidv 2511 . 2 (𝑦 = 𝐴 → (∃𝑥𝐶 𝑥𝐵𝑦 ↔ ∃𝑥𝐶 𝑥𝐵𝐴))
3 dfima2 5046 . 2 (𝐵𝐶) = {𝑦 ∣ ∃𝑥𝐶 𝑥𝐵𝑦}
42, 3elab2g 2930 1 (𝐴𝑉 → (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1375  wcel 2180  wrex 2489   class class class wbr 4062  cima 4699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-xp 4702  df-cnv 4704  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709
This theorem is referenced by:  elima  5049  elrelimasn  5070  fvelima  5658  ecexr  6655
  Copyright terms: Public domain W3C validator