ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elreimasng Unicode version

Theorem elreimasng 4970
Description: Elementhood in the image of a singleton. (Contributed by Jim Kingdon, 10-Dec-2018.)
Assertion
Ref Expression
elreimasng  |-  ( ( Rel  R  /\  A  e.  V )  ->  ( B  e.  ( R " { A } )  <-> 
A R B ) )

Proof of Theorem elreimasng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 imasng 4969 . . 3  |-  ( A  e.  V  ->  ( R " { A }
)  =  { x  |  A R x }
)
21eleq2d 2236 . 2  |-  ( A  e.  V  ->  ( B  e.  ( R " { A } )  <-> 
B  e.  { x  |  A R x }
) )
3 brrelex2 4645 . . . 4  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
43ex 114 . . 3  |-  ( Rel 
R  ->  ( A R B  ->  B  e. 
_V ) )
5 breq2 3986 . . . 4  |-  ( x  =  B  ->  ( A R x  <->  A R B ) )
65elab3g 2877 . . 3  |-  ( ( A R B  ->  B  e.  _V )  ->  ( B  e.  {
x  |  A R x }  <->  A R B ) )
74, 6syl 14 . 2  |-  ( Rel 
R  ->  ( B  e.  { x  |  A R x }  <->  A R B ) )
82, 7sylan9bbr 459 1  |-  ( ( Rel  R  /\  A  e.  V )  ->  ( B  e.  ( R " { A } )  <-> 
A R B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   {cab 2151   _Vcvv 2726   {csn 3576   class class class wbr 3982   "cima 4607   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator