ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elreimasng Unicode version

Theorem elreimasng 4863
Description: Elementhood in the image of a singleton. (Contributed by Jim Kingdon, 10-Dec-2018.)
Assertion
Ref Expression
elreimasng  |-  ( ( Rel  R  /\  A  e.  V )  ->  ( B  e.  ( R " { A } )  <-> 
A R B ) )

Proof of Theorem elreimasng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 imasng 4862 . . 3  |-  ( A  e.  V  ->  ( R " { A }
)  =  { x  |  A R x }
)
21eleq2d 2184 . 2  |-  ( A  e.  V  ->  ( B  e.  ( R " { A } )  <-> 
B  e.  { x  |  A R x }
) )
3 brrelex2 4540 . . . 4  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
43ex 114 . . 3  |-  ( Rel 
R  ->  ( A R B  ->  B  e. 
_V ) )
5 breq2 3899 . . . 4  |-  ( x  =  B  ->  ( A R x  <->  A R B ) )
65elab3g 2804 . . 3  |-  ( ( A R B  ->  B  e.  _V )  ->  ( B  e.  {
x  |  A R x }  <->  A R B ) )
74, 6syl 14 . 2  |-  ( Rel 
R  ->  ( B  e.  { x  |  A R x }  <->  A R B ) )
82, 7sylan9bbr 456 1  |-  ( ( Rel  R  /\  A  e.  V )  ->  ( B  e.  ( R " { A } )  <-> 
A R B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1463   {cab 2101   _Vcvv 2657   {csn 3493   class class class wbr 3895   "cima 4502   Rel wrel 4504
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-sbc 2879  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-br 3896  df-opab 3950  df-xp 4505  df-rel 4506  df-cnv 4507  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator