ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elreimasng GIF version

Theorem elreimasng 4977
Description: Elementhood in the image of a singleton. (Contributed by Jim Kingdon, 10-Dec-2018.)
Assertion
Ref Expression
elreimasng ((Rel 𝑅𝐴𝑉) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))

Proof of Theorem elreimasng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imasng 4976 . . 3 (𝐴𝑉 → (𝑅 “ {𝐴}) = {𝑥𝐴𝑅𝑥})
21eleq2d 2240 . 2 (𝐴𝑉 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐵 ∈ {𝑥𝐴𝑅𝑥}))
3 brrelex2 4652 . . . 4 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
43ex 114 . . 3 (Rel 𝑅 → (𝐴𝑅𝐵𝐵 ∈ V))
5 breq2 3993 . . . 4 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
65elab3g 2881 . . 3 ((𝐴𝑅𝐵𝐵 ∈ V) → (𝐵 ∈ {𝑥𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵))
74, 6syl 14 . 2 (Rel 𝑅 → (𝐵 ∈ {𝑥𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵))
82, 7sylan9bbr 460 1 ((Rel 𝑅𝐴𝑉) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2141  {cab 2156  Vcvv 2730  {csn 3583   class class class wbr 3989  cima 4614  Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator