ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elreimasng GIF version

Theorem elreimasng 4861
Description: Elementhood in the image of a singleton. (Contributed by Jim Kingdon, 10-Dec-2018.)
Assertion
Ref Expression
elreimasng ((Rel 𝑅𝐴𝑉) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))

Proof of Theorem elreimasng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imasng 4860 . . 3 (𝐴𝑉 → (𝑅 “ {𝐴}) = {𝑥𝐴𝑅𝑥})
21eleq2d 2182 . 2 (𝐴𝑉 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐵 ∈ {𝑥𝐴𝑅𝑥}))
3 brrelex2 4538 . . . 4 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
43ex 114 . . 3 (Rel 𝑅 → (𝐴𝑅𝐵𝐵 ∈ V))
5 breq2 3897 . . . 4 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
65elab3g 2802 . . 3 ((𝐴𝑅𝐵𝐵 ∈ V) → (𝐵 ∈ {𝑥𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵))
74, 6syl 14 . 2 (Rel 𝑅 → (𝐵 ∈ {𝑥𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵))
82, 7sylan9bbr 456 1 ((Rel 𝑅𝐴𝑉) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1461  {cab 2099  Vcvv 2655  {csn 3491   class class class wbr 3893  cima 4500  Rel wrel 4502
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-sbc 2877  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-xp 4503  df-rel 4504  df-cnv 4505  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator