ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elimasn Unicode version

Theorem elimasn 4971
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
elimasn.1  |-  B  e. 
_V
elimasn.2  |-  C  e. 
_V
Assertion
Ref Expression
elimasn  |-  ( C  e.  ( A " { B } )  <->  <. B ,  C >.  e.  A )

Proof of Theorem elimasn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elimasn.2 . . 3  |-  C  e. 
_V
2 breq2 3986 . . 3  |-  ( x  =  C  ->  ( B A x  <->  B A C ) )
3 elimasn.1 . . . 4  |-  B  e. 
_V
4 imasng 4969 . . . 4  |-  ( B  e.  _V  ->  ( A " { B }
)  =  { x  |  B A x }
)
53, 4ax-mp 5 . . 3  |-  ( A
" { B }
)  =  { x  |  B A x }
61, 2, 5elab2 2874 . 2  |-  ( C  e.  ( A " { B } )  <->  B A C )
7 df-br 3983 . 2  |-  ( B A C  <->  <. B ,  C >.  e.  A )
86, 7bitri 183 1  |-  ( C  e.  ( A " { B } )  <->  <. B ,  C >.  e.  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343    e. wcel 2136   {cab 2151   _Vcvv 2726   {csn 3576   <.cop 3579   class class class wbr 3982   "cima 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617
This theorem is referenced by:  elimasng  4972  dfco2  5103  dfco2a  5104  ressn  5144
  Copyright terms: Public domain W3C validator