ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elimasn Unicode version

Theorem elimasn 5068
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
elimasn.1  |-  B  e. 
_V
elimasn.2  |-  C  e. 
_V
Assertion
Ref Expression
elimasn  |-  ( C  e.  ( A " { B } )  <->  <. B ,  C >.  e.  A )

Proof of Theorem elimasn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elimasn.2 . . 3  |-  C  e. 
_V
2 breq2 4063 . . 3  |-  ( x  =  C  ->  ( B A x  <->  B A C ) )
3 elimasn.1 . . . 4  |-  B  e. 
_V
4 imasng 5066 . . . 4  |-  ( B  e.  _V  ->  ( A " { B }
)  =  { x  |  B A x }
)
53, 4ax-mp 5 . . 3  |-  ( A
" { B }
)  =  { x  |  B A x }
61, 2, 5elab2 2928 . 2  |-  ( C  e.  ( A " { B } )  <->  B A C )
7 df-br 4060 . 2  |-  ( B A C  <->  <. B ,  C >.  e.  A )
86, 7bitri 184 1  |-  ( C  e.  ( A " { B } )  <->  <. B ,  C >.  e.  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    e. wcel 2178   {cab 2193   _Vcvv 2776   {csn 3643   <.cop 3646   class class class wbr 4059   "cima 4696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706
This theorem is referenced by:  elimasng  5069  dfco2  5201  dfco2a  5202  ressn  5242
  Copyright terms: Public domain W3C validator