ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftel Unicode version

Theorem fliftel 5861
Description: Elementhood in the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
Assertion
Ref Expression
fliftel  |-  ( ph  ->  ( C F D  <->  E. x  e.  X  ( C  =  A  /\  D  =  B
) ) )
Distinct variable groups:    x, C    x, R    x, D    ph, x    x, X    x, S
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftel
StepHypRef Expression
1 df-br 4044 . . . 4  |-  ( C F D  <->  <. C ,  D >.  e.  F )
2 flift.1 . . . . 5  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
32eleq2i 2271 . . . 4  |-  ( <. C ,  D >.  e.  F  <->  <. C ,  D >.  e.  ran  ( x  e.  X  |->  <. A ,  B >. ) )
41, 3bitri 184 . . 3  |-  ( C F D  <->  <. C ,  D >.  e.  ran  (
x  e.  X  |->  <. A ,  B >. ) )
5 flift.2 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
6 flift.3 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
7 opexg 4271 . . . . . 6  |-  ( ( A  e.  R  /\  B  e.  S )  -> 
<. A ,  B >.  e. 
_V )
85, 6, 7syl2anc 411 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  <. A ,  B >.  e.  _V )
98ralrimiva 2578 . . . 4  |-  ( ph  ->  A. x  e.  X  <. A ,  B >.  e. 
_V )
10 eqid 2204 . . . . 5  |-  ( x  e.  X  |->  <. A ,  B >. )  =  ( x  e.  X  |->  <. A ,  B >. )
1110elrnmptg 4929 . . . 4  |-  ( A. x  e.  X  <. A ,  B >.  e.  _V  ->  ( <. C ,  D >.  e.  ran  ( x  e.  X  |->  <. A ,  B >. )  <->  E. x  e.  X  <. C ,  D >.  =  <. A ,  B >. ) )
129, 11syl 14 . . 3  |-  ( ph  ->  ( <. C ,  D >.  e.  ran  ( x  e.  X  |->  <. A ,  B >. )  <->  E. x  e.  X  <. C ,  D >.  =  <. A ,  B >. ) )
134, 12bitrid 192 . 2  |-  ( ph  ->  ( C F D  <->  E. x  e.  X  <. C ,  D >.  = 
<. A ,  B >. ) )
14 opthg2 4282 . . . 4  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( <. C ,  D >.  =  <. A ,  B >.  <-> 
( C  =  A  /\  D  =  B ) ) )
155, 6, 14syl2anc 411 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  ( <. C ,  D >.  = 
<. A ,  B >.  <->  ( C  =  A  /\  D  =  B )
) )
1615rexbidva 2502 . 2  |-  ( ph  ->  ( E. x  e.  X  <. C ,  D >.  =  <. A ,  B >.  <->  E. x  e.  X  ( C  =  A  /\  D  =  B
) ) )
1713, 16bitrd 188 1  |-  ( ph  ->  ( C F D  <->  E. x  e.  X  ( C  =  A  /\  D  =  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484   _Vcvv 2771   <.cop 3635   class class class wbr 4043    |-> cmpt 4104   ran crn 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-mpt 4106  df-cnv 4682  df-dm 4684  df-rn 4685
This theorem is referenced by:  fliftcnv  5863  fliftfun  5864  fliftf  5867  fliftval  5868  qliftel  6701
  Copyright terms: Public domain W3C validator