Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fliftel | Unicode version |
Description: Elementhood in the relation . (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | |
flift.2 | |
flift.3 |
Ref | Expression |
---|---|
fliftel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3962 | . . . 4 | |
2 | flift.1 | . . . . 5 | |
3 | 2 | eleq2i 2221 | . . . 4 |
4 | 1, 3 | bitri 183 | . . 3 |
5 | flift.2 | . . . . . 6 | |
6 | flift.3 | . . . . . 6 | |
7 | opexg 4183 | . . . . . 6 | |
8 | 5, 6, 7 | syl2anc 409 | . . . . 5 |
9 | 8 | ralrimiva 2527 | . . . 4 |
10 | eqid 2154 | . . . . 5 | |
11 | 10 | elrnmptg 4831 | . . . 4 |
12 | 9, 11 | syl 14 | . . 3 |
13 | 4, 12 | syl5bb 191 | . 2 |
14 | opthg2 4194 | . . . 4 | |
15 | 5, 6, 14 | syl2anc 409 | . . 3 |
16 | 15 | rexbidva 2451 | . 2 |
17 | 13, 16 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1332 wcel 2125 wral 2432 wrex 2433 cvv 2709 cop 3559 class class class wbr 3961 cmpt 4021 crn 4580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 df-mpt 4023 df-cnv 4587 df-dm 4589 df-rn 4590 |
This theorem is referenced by: fliftcnv 5736 fliftfun 5737 fliftf 5740 fliftval 5741 qliftel 6549 |
Copyright terms: Public domain | W3C validator |