ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftel Unicode version

Theorem fliftel 5916
Description: Elementhood in the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
Assertion
Ref Expression
fliftel  |-  ( ph  ->  ( C F D  <->  E. x  e.  X  ( C  =  A  /\  D  =  B
) ) )
Distinct variable groups:    x, C    x, R    x, D    ph, x    x, X    x, S
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftel
StepHypRef Expression
1 df-br 4083 . . . 4  |-  ( C F D  <->  <. C ,  D >.  e.  F )
2 flift.1 . . . . 5  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
32eleq2i 2296 . . . 4  |-  ( <. C ,  D >.  e.  F  <->  <. C ,  D >.  e.  ran  ( x  e.  X  |->  <. A ,  B >. ) )
41, 3bitri 184 . . 3  |-  ( C F D  <->  <. C ,  D >.  e.  ran  (
x  e.  X  |->  <. A ,  B >. ) )
5 flift.2 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
6 flift.3 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
7 opexg 4313 . . . . . 6  |-  ( ( A  e.  R  /\  B  e.  S )  -> 
<. A ,  B >.  e. 
_V )
85, 6, 7syl2anc 411 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  <. A ,  B >.  e.  _V )
98ralrimiva 2603 . . . 4  |-  ( ph  ->  A. x  e.  X  <. A ,  B >.  e. 
_V )
10 eqid 2229 . . . . 5  |-  ( x  e.  X  |->  <. A ,  B >. )  =  ( x  e.  X  |->  <. A ,  B >. )
1110elrnmptg 4975 . . . 4  |-  ( A. x  e.  X  <. A ,  B >.  e.  _V  ->  ( <. C ,  D >.  e.  ran  ( x  e.  X  |->  <. A ,  B >. )  <->  E. x  e.  X  <. C ,  D >.  =  <. A ,  B >. ) )
129, 11syl 14 . . 3  |-  ( ph  ->  ( <. C ,  D >.  e.  ran  ( x  e.  X  |->  <. A ,  B >. )  <->  E. x  e.  X  <. C ,  D >.  =  <. A ,  B >. ) )
134, 12bitrid 192 . 2  |-  ( ph  ->  ( C F D  <->  E. x  e.  X  <. C ,  D >.  = 
<. A ,  B >. ) )
14 opthg2 4324 . . . 4  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( <. C ,  D >.  =  <. A ,  B >.  <-> 
( C  =  A  /\  D  =  B ) ) )
155, 6, 14syl2anc 411 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  ( <. C ,  D >.  = 
<. A ,  B >.  <->  ( C  =  A  /\  D  =  B )
) )
1615rexbidva 2527 . 2  |-  ( ph  ->  ( E. x  e.  X  <. C ,  D >.  =  <. A ,  B >.  <->  E. x  e.  X  ( C  =  A  /\  D  =  B
) ) )
1713, 16bitrd 188 1  |-  ( ph  ->  ( C F D  <->  E. x  e.  X  ( C  =  A  /\  D  =  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   _Vcvv 2799   <.cop 3669   class class class wbr 4082    |-> cmpt 4144   ran crn 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-mpt 4146  df-cnv 4726  df-dm 4728  df-rn 4729
This theorem is referenced by:  fliftcnv  5918  fliftfun  5919  fliftf  5922  fliftval  5923  qliftel  6760
  Copyright terms: Public domain W3C validator