ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftel Unicode version

Theorem fliftel 5885
Description: Elementhood in the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
Assertion
Ref Expression
fliftel  |-  ( ph  ->  ( C F D  <->  E. x  e.  X  ( C  =  A  /\  D  =  B
) ) )
Distinct variable groups:    x, C    x, R    x, D    ph, x    x, X    x, S
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftel
StepHypRef Expression
1 df-br 4060 . . . 4  |-  ( C F D  <->  <. C ,  D >.  e.  F )
2 flift.1 . . . . 5  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
32eleq2i 2274 . . . 4  |-  ( <. C ,  D >.  e.  F  <->  <. C ,  D >.  e.  ran  ( x  e.  X  |->  <. A ,  B >. ) )
41, 3bitri 184 . . 3  |-  ( C F D  <->  <. C ,  D >.  e.  ran  (
x  e.  X  |->  <. A ,  B >. ) )
5 flift.2 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
6 flift.3 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
7 opexg 4290 . . . . . 6  |-  ( ( A  e.  R  /\  B  e.  S )  -> 
<. A ,  B >.  e. 
_V )
85, 6, 7syl2anc 411 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  <. A ,  B >.  e.  _V )
98ralrimiva 2581 . . . 4  |-  ( ph  ->  A. x  e.  X  <. A ,  B >.  e. 
_V )
10 eqid 2207 . . . . 5  |-  ( x  e.  X  |->  <. A ,  B >. )  =  ( x  e.  X  |->  <. A ,  B >. )
1110elrnmptg 4949 . . . 4  |-  ( A. x  e.  X  <. A ,  B >.  e.  _V  ->  ( <. C ,  D >.  e.  ran  ( x  e.  X  |->  <. A ,  B >. )  <->  E. x  e.  X  <. C ,  D >.  =  <. A ,  B >. ) )
129, 11syl 14 . . 3  |-  ( ph  ->  ( <. C ,  D >.  e.  ran  ( x  e.  X  |->  <. A ,  B >. )  <->  E. x  e.  X  <. C ,  D >.  =  <. A ,  B >. ) )
134, 12bitrid 192 . 2  |-  ( ph  ->  ( C F D  <->  E. x  e.  X  <. C ,  D >.  = 
<. A ,  B >. ) )
14 opthg2 4301 . . . 4  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( <. C ,  D >.  =  <. A ,  B >.  <-> 
( C  =  A  /\  D  =  B ) ) )
155, 6, 14syl2anc 411 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  ( <. C ,  D >.  = 
<. A ,  B >.  <->  ( C  =  A  /\  D  =  B )
) )
1615rexbidva 2505 . 2  |-  ( ph  ->  ( E. x  e.  X  <. C ,  D >.  =  <. A ,  B >.  <->  E. x  e.  X  ( C  =  A  /\  D  =  B
) ) )
1713, 16bitrd 188 1  |-  ( ph  ->  ( C F D  <->  E. x  e.  X  ( C  =  A  /\  D  =  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   _Vcvv 2776   <.cop 3646   class class class wbr 4059    |-> cmpt 4121   ran crn 4694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-mpt 4123  df-cnv 4701  df-dm 4703  df-rn 4704
This theorem is referenced by:  fliftcnv  5887  fliftfun  5888  fliftf  5891  fliftval  5892  qliftel  6725
  Copyright terms: Public domain W3C validator