ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapdm0 Unicode version

Theorem mapdm0 6750
Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.)
Assertion
Ref Expression
mapdm0  |-  ( B  e.  V  ->  ( B  ^m  (/) )  =  { (/)
} )

Proof of Theorem mapdm0
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 0ex 4171 . . . . 5  |-  (/)  e.  _V
2 elmapg 6748 . . . . 5  |-  ( ( B  e.  V  /\  (/) 
e.  _V )  ->  (
f  e.  ( B  ^m  (/) )  <->  f : (/) --> B ) )
31, 2mpan2 425 . . . 4  |-  ( B  e.  V  ->  (
f  e.  ( B  ^m  (/) )  <->  f : (/) --> B ) )
4 f0bi 5468 . . . 4  |-  ( f : (/) --> B  <->  f  =  (/) )
53, 4bitrdi 196 . . 3  |-  ( B  e.  V  ->  (
f  e.  ( B  ^m  (/) )  <->  f  =  (/) ) )
6 vex 2775 . . . 4  |-  f  e. 
_V
76elsn 3649 . . 3  |-  ( f  e.  { (/) }  <->  f  =  (/) )
85, 7bitr4di 198 . 2  |-  ( B  e.  V  ->  (
f  e.  ( B  ^m  (/) )  <->  f  e.  {
(/) } ) )
98eqrdv 2203 1  |-  ( B  e.  V  ->  ( B  ^m  (/) )  =  { (/)
} )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772   (/)c0 3460   {csn 3633   -->wf 5267  (class class class)co 5944    ^m cmap 6735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-map 6737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator