ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsssuc Unicode version

Theorem nnsssuc 6648
Description: A natural number is a subset of another natural number if and only if it belongs to its successor. (Contributed by Jim Kingdon, 22-Jul-2023.)
Assertion
Ref Expression
nnsssuc  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  A  e.  suc  B ) )

Proof of Theorem nnsssuc
StepHypRef Expression
1 nnsseleq 6647 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  ( A  e.  B  \/  A  =  B )
) )
2 elsucg 4495 . . 3  |-  ( A  e.  om  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )
32adantr 276 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  suc  B  <-> 
( A  e.  B  \/  A  =  B
) ) )
41, 3bitr4d 191 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  A  e.  suc  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200    C_ wss 3197   suc csuc 4456   omcom 4682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-int 3924  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683
This theorem is referenced by:  nninfninc  7290  ctinfomlemom  12998
  Copyright terms: Public domain W3C validator