Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unielxp | Unicode version |
Description: The membership relation for a cross product is inherited by union. (Contributed by NM, 16-Sep-2006.) |
Ref | Expression |
---|---|
unielxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp7 6149 | . 2 | |
2 | elvvuni 4675 | . . . 4 | |
3 | 2 | adantr 274 | . . 3 |
4 | simprl 526 | . . . . . 6 | |
5 | eleq2 2234 | . . . . . . . 8 | |
6 | eleq1 2233 | . . . . . . . . 9 | |
7 | fveq2 5496 | . . . . . . . . . . 11 | |
8 | 7 | eleq1d 2239 | . . . . . . . . . 10 |
9 | fveq2 5496 | . . . . . . . . . . 11 | |
10 | 9 | eleq1d 2239 | . . . . . . . . . 10 |
11 | 8, 10 | anbi12d 470 | . . . . . . . . 9 |
12 | 6, 11 | anbi12d 470 | . . . . . . . 8 |
13 | 5, 12 | anbi12d 470 | . . . . . . 7 |
14 | 13 | spcegv 2818 | . . . . . 6 |
15 | 4, 14 | mpcom 36 | . . . . 5 |
16 | eluniab 3808 | . . . . 5 | |
17 | 15, 16 | sylibr 133 | . . . 4 |
18 | xp2 6152 | . . . . . 6 | |
19 | df-rab 2457 | . . . . . 6 | |
20 | 18, 19 | eqtri 2191 | . . . . 5 |
21 | 20 | unieqi 3806 | . . . 4 |
22 | 17, 21 | eleqtrrdi 2264 | . . 3 |
23 | 3, 22 | mpancom 420 | . 2 |
24 | 1, 23 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wex 1485 wcel 2141 cab 2156 crab 2452 cvv 2730 cuni 3796 cxp 4609 cfv 5198 c1st 6117 c2nd 6118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 df-1st 6119 df-2nd 6120 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |