ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unielxp Unicode version

Theorem unielxp 6283
Description: The membership relation for a cross product is inherited by union. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unielxp  |-  ( A  e.  ( B  X.  C )  ->  U. A  e.  U. ( B  X.  C ) )

Proof of Theorem unielxp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elxp7 6279 . 2  |-  ( A  e.  ( B  X.  C )  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A
)  e.  C ) ) )
2 elvvuni 4757 . . . 4  |-  ( A  e.  ( _V  X.  _V )  ->  U. A  e.  A )
32adantr 276 . . 3  |-  ( ( A  e.  ( _V 
X.  _V )  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) )  ->  U. A  e.  A
)
4 simprl 529 . . . . . 6  |-  ( ( U. A  e.  A  /\  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )  ->  A  e.  ( _V  X.  _V )
)
5 eleq2 2271 . . . . . . . 8  |-  ( x  =  A  ->  ( U. A  e.  x  <->  U. A  e.  A ) )
6 eleq1 2270 . . . . . . . . 9  |-  ( x  =  A  ->  (
x  e.  ( _V 
X.  _V )  <->  A  e.  ( _V  X.  _V )
) )
7 fveq2 5599 . . . . . . . . . . 11  |-  ( x  =  A  ->  ( 1st `  x )  =  ( 1st `  A
) )
87eleq1d 2276 . . . . . . . . . 10  |-  ( x  =  A  ->  (
( 1st `  x
)  e.  B  <->  ( 1st `  A )  e.  B
) )
9 fveq2 5599 . . . . . . . . . . 11  |-  ( x  =  A  ->  ( 2nd `  x )  =  ( 2nd `  A
) )
109eleq1d 2276 . . . . . . . . . 10  |-  ( x  =  A  ->  (
( 2nd `  x
)  e.  C  <->  ( 2nd `  A )  e.  C
) )
118, 10anbi12d 473 . . . . . . . . 9  |-  ( x  =  A  ->  (
( ( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C )  <->  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) ) )
126, 11anbi12d 473 . . . . . . . 8  |-  ( x  =  A  ->  (
( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) )  <-> 
( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) ) )
135, 12anbi12d 473 . . . . . . 7  |-  ( x  =  A  ->  (
( U. A  e.  x  /\  ( x  e.  ( _V  X.  _V )  /\  (
( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) )  <->  ( U. A  e.  A  /\  ( A  e.  ( _V  X.  _V )  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) ) ) )
1413spcegv 2868 . . . . . 6  |-  ( A  e.  ( _V  X.  _V )  ->  ( ( U. A  e.  A  /\  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )  ->  E. x
( U. A  e.  x  /\  ( x  e.  ( _V  X.  _V )  /\  (
( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) ) ) )
154, 14mpcom 36 . . . . 5  |-  ( ( U. A  e.  A  /\  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )  ->  E. x
( U. A  e.  x  /\  ( x  e.  ( _V  X.  _V )  /\  (
( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) ) )
16 eluniab 3876 . . . . 5  |-  ( U. A  e.  U. { x  |  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x )  e.  B  /\  ( 2nd `  x
)  e.  C ) ) }  <->  E. x
( U. A  e.  x  /\  ( x  e.  ( _V  X.  _V )  /\  (
( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) ) )
1715, 16sylibr 134 . . . 4  |-  ( ( U. A  e.  A  /\  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )  ->  U. A  e. 
U. { x  |  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) } )
18 xp2 6282 . . . . . 6  |-  ( B  X.  C )  =  { x  e.  ( _V  X.  _V )  |  ( ( 1st `  x )  e.  B  /\  ( 2nd `  x
)  e.  C ) }
19 df-rab 2495 . . . . . 6  |-  { x  e.  ( _V  X.  _V )  |  ( ( 1st `  x )  e.  B  /\  ( 2nd `  x )  e.  C
) }  =  {
x  |  ( x  e.  ( _V  X.  _V )  /\  (
( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) }
2018, 19eqtri 2228 . . . . 5  |-  ( B  X.  C )  =  { x  |  ( x  e.  ( _V 
X.  _V )  /\  (
( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) }
2120unieqi 3874 . . . 4  |-  U. ( B  X.  C )  = 
U. { x  |  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) }
2217, 21eleqtrrdi 2301 . . 3  |-  ( ( U. A  e.  A  /\  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )  ->  U. A  e. 
U. ( B  X.  C ) )
233, 22mpancom 422 . 2  |-  ( ( A  e.  ( _V 
X.  _V )  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) )  ->  U. A  e.  U. ( B  X.  C
) )
241, 23sylbi 121 1  |-  ( A  e.  ( B  X.  C )  ->  U. A  e.  U. ( B  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2178   {cab 2193   {crab 2490   _Vcvv 2776   U.cuni 3864    X. cxp 4691   ` cfv 5290   1stc1st 6247   2ndc2nd 6248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fo 5296  df-fv 5298  df-1st 6249  df-2nd 6250
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator