ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unielxp Unicode version

Theorem unielxp 6203
Description: The membership relation for a cross product is inherited by union. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unielxp  |-  ( A  e.  ( B  X.  C )  ->  U. A  e.  U. ( B  X.  C ) )

Proof of Theorem unielxp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elxp7 6199 . 2  |-  ( A  e.  ( B  X.  C )  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A
)  e.  C ) ) )
2 elvvuni 4711 . . . 4  |-  ( A  e.  ( _V  X.  _V )  ->  U. A  e.  A )
32adantr 276 . . 3  |-  ( ( A  e.  ( _V 
X.  _V )  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) )  ->  U. A  e.  A
)
4 simprl 529 . . . . . 6  |-  ( ( U. A  e.  A  /\  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )  ->  A  e.  ( _V  X.  _V )
)
5 eleq2 2253 . . . . . . . 8  |-  ( x  =  A  ->  ( U. A  e.  x  <->  U. A  e.  A ) )
6 eleq1 2252 . . . . . . . . 9  |-  ( x  =  A  ->  (
x  e.  ( _V 
X.  _V )  <->  A  e.  ( _V  X.  _V )
) )
7 fveq2 5537 . . . . . . . . . . 11  |-  ( x  =  A  ->  ( 1st `  x )  =  ( 1st `  A
) )
87eleq1d 2258 . . . . . . . . . 10  |-  ( x  =  A  ->  (
( 1st `  x
)  e.  B  <->  ( 1st `  A )  e.  B
) )
9 fveq2 5537 . . . . . . . . . . 11  |-  ( x  =  A  ->  ( 2nd `  x )  =  ( 2nd `  A
) )
109eleq1d 2258 . . . . . . . . . 10  |-  ( x  =  A  ->  (
( 2nd `  x
)  e.  C  <->  ( 2nd `  A )  e.  C
) )
118, 10anbi12d 473 . . . . . . . . 9  |-  ( x  =  A  ->  (
( ( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C )  <->  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) ) )
126, 11anbi12d 473 . . . . . . . 8  |-  ( x  =  A  ->  (
( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) )  <-> 
( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) ) )
135, 12anbi12d 473 . . . . . . 7  |-  ( x  =  A  ->  (
( U. A  e.  x  /\  ( x  e.  ( _V  X.  _V )  /\  (
( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) )  <->  ( U. A  e.  A  /\  ( A  e.  ( _V  X.  _V )  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) ) ) )
1413spcegv 2840 . . . . . 6  |-  ( A  e.  ( _V  X.  _V )  ->  ( ( U. A  e.  A  /\  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )  ->  E. x
( U. A  e.  x  /\  ( x  e.  ( _V  X.  _V )  /\  (
( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) ) ) )
154, 14mpcom 36 . . . . 5  |-  ( ( U. A  e.  A  /\  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )  ->  E. x
( U. A  e.  x  /\  ( x  e.  ( _V  X.  _V )  /\  (
( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) ) )
16 eluniab 3839 . . . . 5  |-  ( U. A  e.  U. { x  |  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x )  e.  B  /\  ( 2nd `  x
)  e.  C ) ) }  <->  E. x
( U. A  e.  x  /\  ( x  e.  ( _V  X.  _V )  /\  (
( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) ) )
1715, 16sylibr 134 . . . 4  |-  ( ( U. A  e.  A  /\  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )  ->  U. A  e. 
U. { x  |  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) } )
18 xp2 6202 . . . . . 6  |-  ( B  X.  C )  =  { x  e.  ( _V  X.  _V )  |  ( ( 1st `  x )  e.  B  /\  ( 2nd `  x
)  e.  C ) }
19 df-rab 2477 . . . . . 6  |-  { x  e.  ( _V  X.  _V )  |  ( ( 1st `  x )  e.  B  /\  ( 2nd `  x )  e.  C
) }  =  {
x  |  ( x  e.  ( _V  X.  _V )  /\  (
( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) }
2018, 19eqtri 2210 . . . . 5  |-  ( B  X.  C )  =  { x  |  ( x  e.  ( _V 
X.  _V )  /\  (
( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) }
2120unieqi 3837 . . . 4  |-  U. ( B  X.  C )  = 
U. { x  |  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) }
2217, 21eleqtrrdi 2283 . . 3  |-  ( ( U. A  e.  A  /\  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )  ->  U. A  e. 
U. ( B  X.  C ) )
233, 22mpancom 422 . 2  |-  ( ( A  e.  ( _V 
X.  _V )  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) )  ->  U. A  e.  U. ( B  X.  C
) )
241, 23sylbi 121 1  |-  ( A  e.  ( B  X.  C )  ->  U. A  e.  U. ( B  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2160   {cab 2175   {crab 2472   _Vcvv 2752   U.cuni 3827    X. cxp 4645   ` cfv 5238   1stc1st 6167   2ndc2nd 6168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-fo 5244  df-fv 5246  df-1st 6169  df-2nd 6170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator