![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqbrrdv | GIF version |
Description: Deduction from extensionality principle for relations. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
eqbrrdv.1 | ⊢ (𝜑 → Rel 𝐴) |
eqbrrdv.2 | ⊢ (𝜑 → Rel 𝐵) |
eqbrrdv.3 | ⊢ (𝜑 → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) |
Ref | Expression |
---|---|
eqbrrdv | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrrdv.3 | . . . 4 ⊢ (𝜑 → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) | |
2 | df-br 3896 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
3 | df-br 3896 | . . . 4 ⊢ (𝑥𝐵𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
4 | 1, 2, 3 | 3bitr3g 221 | . . 3 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
5 | 4 | alrimivv 1829 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
6 | eqbrrdv.1 | . . 3 ⊢ (𝜑 → Rel 𝐴) | |
7 | eqbrrdv.2 | . . 3 ⊢ (𝜑 → Rel 𝐵) | |
8 | eqrel 4588 | . . 3 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
9 | 6, 7, 8 | syl2anc 406 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵))) |
10 | 5, 9 | mpbird 166 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1312 = wceq 1314 ∈ wcel 1463 〈cop 3496 class class class wbr 3895 Rel wrel 4504 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-br 3896 df-opab 3950 df-xp 4505 df-rel 4506 |
This theorem is referenced by: eqbrrdva 4669 |
Copyright terms: Public domain | W3C validator |