ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofres Unicode version

Theorem ofres 6196
Description: Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
ofres.1  |-  ( ph  ->  F  Fn  A )
ofres.2  |-  ( ph  ->  G  Fn  B )
ofres.3  |-  ( ph  ->  A  e.  V )
ofres.4  |-  ( ph  ->  B  e.  W )
ofres.5  |-  ( A  i^i  B )  =  C
Assertion
Ref Expression
ofres  |-  ( ph  ->  ( F  oF R G )  =  ( ( F  |`  C )  oF R ( G  |`  C ) ) )

Proof of Theorem ofres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ofres.1 . . 3  |-  ( ph  ->  F  Fn  A )
2 ofres.2 . . 3  |-  ( ph  ->  G  Fn  B )
3 ofres.3 . . 3  |-  ( ph  ->  A  e.  V )
4 ofres.4 . . 3  |-  ( ph  ->  B  e.  W )
5 ofres.5 . . 3  |-  ( A  i^i  B )  =  C
6 eqidd 2208 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( F `  x ) )
7 eqidd 2208 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  ( G `  x ) )
81, 2, 3, 4, 5, 6, 7offval 6189 . 2  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  C  |->  ( ( F `  x ) R ( G `  x ) ) ) )
9 inss1 3401 . . . . 5  |-  ( A  i^i  B )  C_  A
105, 9eqsstrri 3234 . . . 4  |-  C  C_  A
11 fnssres 5408 . . . 4  |-  ( ( F  Fn  A  /\  C  C_  A )  -> 
( F  |`  C )  Fn  C )
121, 10, 11sylancl 413 . . 3  |-  ( ph  ->  ( F  |`  C )  Fn  C )
13 inss2 3402 . . . . 5  |-  ( A  i^i  B )  C_  B
145, 13eqsstrri 3234 . . . 4  |-  C  C_  B
15 fnssres 5408 . . . 4  |-  ( ( G  Fn  B  /\  C  C_  B )  -> 
( G  |`  C )  Fn  C )
162, 14, 15sylancl 413 . . 3  |-  ( ph  ->  ( G  |`  C )  Fn  C )
17 ssexg 4199 . . . 4  |-  ( ( C  C_  A  /\  A  e.  V )  ->  C  e.  _V )
1810, 3, 17sylancr 414 . . 3  |-  ( ph  ->  C  e.  _V )
19 inidm 3390 . . 3  |-  ( C  i^i  C )  =  C
20 fvres 5623 . . . 4  |-  ( x  e.  C  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
2120adantl 277 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
22 fvres 5623 . . . 4  |-  ( x  e.  C  ->  (
( G  |`  C ) `
 x )  =  ( G `  x
) )
2322adantl 277 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  (
( G  |`  C ) `
 x )  =  ( G `  x
) )
2412, 16, 18, 18, 19, 21, 23offval 6189 . 2  |-  ( ph  ->  ( ( F  |`  C )  oF R ( G  |`  C ) )  =  ( x  e.  C  |->  ( ( F `  x ) R ( G `  x ) ) ) )
258, 24eqtr4d 2243 1  |-  ( ph  ->  ( F  oF R G )  =  ( ( F  |`  C )  oF R ( G  |`  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776    i^i cin 3173    C_ wss 3174    |-> cmpt 4121    |` cres 4695    Fn wfn 5285   ` cfv 5290  (class class class)co 5967    oFcof 6179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-of 6181
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator