ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofres Unicode version

Theorem ofres 6145
Description: Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
ofres.1  |-  ( ph  ->  F  Fn  A )
ofres.2  |-  ( ph  ->  G  Fn  B )
ofres.3  |-  ( ph  ->  A  e.  V )
ofres.4  |-  ( ph  ->  B  e.  W )
ofres.5  |-  ( A  i^i  B )  =  C
Assertion
Ref Expression
ofres  |-  ( ph  ->  ( F  oF R G )  =  ( ( F  |`  C )  oF R ( G  |`  C ) ) )

Proof of Theorem ofres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ofres.1 . . 3  |-  ( ph  ->  F  Fn  A )
2 ofres.2 . . 3  |-  ( ph  ->  G  Fn  B )
3 ofres.3 . . 3  |-  ( ph  ->  A  e.  V )
4 ofres.4 . . 3  |-  ( ph  ->  B  e.  W )
5 ofres.5 . . 3  |-  ( A  i^i  B )  =  C
6 eqidd 2194 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( F `  x ) )
7 eqidd 2194 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  ( G `  x ) )
81, 2, 3, 4, 5, 6, 7offval 6138 . 2  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  C  |->  ( ( F `  x ) R ( G `  x ) ) ) )
9 inss1 3379 . . . . 5  |-  ( A  i^i  B )  C_  A
105, 9eqsstrri 3212 . . . 4  |-  C  C_  A
11 fnssres 5367 . . . 4  |-  ( ( F  Fn  A  /\  C  C_  A )  -> 
( F  |`  C )  Fn  C )
121, 10, 11sylancl 413 . . 3  |-  ( ph  ->  ( F  |`  C )  Fn  C )
13 inss2 3380 . . . . 5  |-  ( A  i^i  B )  C_  B
145, 13eqsstrri 3212 . . . 4  |-  C  C_  B
15 fnssres 5367 . . . 4  |-  ( ( G  Fn  B  /\  C  C_  B )  -> 
( G  |`  C )  Fn  C )
162, 14, 15sylancl 413 . . 3  |-  ( ph  ->  ( G  |`  C )  Fn  C )
17 ssexg 4168 . . . 4  |-  ( ( C  C_  A  /\  A  e.  V )  ->  C  e.  _V )
1810, 3, 17sylancr 414 . . 3  |-  ( ph  ->  C  e.  _V )
19 inidm 3368 . . 3  |-  ( C  i^i  C )  =  C
20 fvres 5578 . . . 4  |-  ( x  e.  C  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
2120adantl 277 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
22 fvres 5578 . . . 4  |-  ( x  e.  C  ->  (
( G  |`  C ) `
 x )  =  ( G `  x
) )
2322adantl 277 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  (
( G  |`  C ) `
 x )  =  ( G `  x
) )
2412, 16, 18, 18, 19, 21, 23offval 6138 . 2  |-  ( ph  ->  ( ( F  |`  C )  oF R ( G  |`  C ) )  =  ( x  e.  C  |->  ( ( F `  x ) R ( G `  x ) ) ) )
258, 24eqtr4d 2229 1  |-  ( ph  ->  ( F  oF R G )  =  ( ( F  |`  C )  oF R ( G  |`  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    i^i cin 3152    C_ wss 3153    |-> cmpt 4090    |` cres 4661    Fn wfn 5249   ` cfv 5254  (class class class)co 5918    oFcof 6128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator