| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ofvalg | Unicode version | ||
| Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.) |
| Ref | Expression |
|---|---|
| offval.1 |
|
| offval.2 |
|
| offval.3 |
|
| offval.4 |
|
| offval.5 |
|
| ofval.6 |
|
| ofval.7 |
|
| ofval.8 |
|
| Ref | Expression |
|---|---|
| ofvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 |
. . . . 5
| |
| 2 | offval.2 |
. . . . 5
| |
| 3 | offval.3 |
. . . . 5
| |
| 4 | offval.4 |
. . . . 5
| |
| 5 | offval.5 |
. . . . 5
| |
| 6 | eqidd 2206 |
. . . . 5
| |
| 7 | eqidd 2206 |
. . . . 5
| |
| 8 | 1, 2, 3, 4, 5, 6, 7 | offval 6168 |
. . . 4
|
| 9 | 8 | fveq1d 5580 |
. . 3
|
| 10 | 9 | adantr 276 |
. 2
|
| 11 | eqid 2205 |
. . 3
| |
| 12 | fveq2 5578 |
. . . 4
| |
| 13 | fveq2 5578 |
. . . 4
| |
| 14 | 12, 13 | oveq12d 5964 |
. . 3
|
| 15 | simpr 110 |
. . 3
| |
| 16 | inss1 3393 |
. . . . . . . 8
| |
| 17 | 5, 16 | eqsstrri 3226 |
. . . . . . 7
|
| 18 | 17 | sseli 3189 |
. . . . . 6
|
| 19 | ofval.6 |
. . . . . 6
| |
| 20 | 18, 19 | sylan2 286 |
. . . . 5
|
| 21 | inss2 3394 |
. . . . . . . 8
| |
| 22 | 5, 21 | eqsstrri 3226 |
. . . . . . 7
|
| 23 | 22 | sseli 3189 |
. . . . . 6
|
| 24 | ofval.7 |
. . . . . 6
| |
| 25 | 23, 24 | sylan2 286 |
. . . . 5
|
| 26 | 20, 25 | oveq12d 5964 |
. . . 4
|
| 27 | ofval.8 |
. . . 4
| |
| 28 | 26, 27 | eqeltrd 2282 |
. . 3
|
| 29 | 11, 14, 15, 28 | fvmptd3 5675 |
. 2
|
| 30 | 10, 29, 26 | 3eqtrd 2242 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-of 6160 |
| This theorem is referenced by: offeq 6174 ofc1g 6182 ofc2g 6183 ofnegsub 9037 gsumfzmptfidmadd 13708 mplsubgfilemcl 14494 dvaddxxbr 15206 dvmulxxbr 15207 plyaddlem1 15252 |
| Copyright terms: Public domain | W3C validator |