ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofvalg Unicode version

Theorem ofvalg 5991
Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.)
Hypotheses
Ref Expression
offval.1  |-  ( ph  ->  F  Fn  A )
offval.2  |-  ( ph  ->  G  Fn  B )
offval.3  |-  ( ph  ->  A  e.  V )
offval.4  |-  ( ph  ->  B  e.  W )
offval.5  |-  ( A  i^i  B )  =  S
ofval.6  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
ofval.7  |-  ( (
ph  /\  X  e.  B )  ->  ( G `  X )  =  D )
ofval.8  |-  ( (
ph  /\  X  e.  S )  ->  ( C R D )  e.  U )
Assertion
Ref Expression
ofvalg  |-  ( (
ph  /\  X  e.  S )  ->  (
( F  oF R G ) `  X )  =  ( C R D ) )

Proof of Theorem ofvalg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . 5  |-  ( ph  ->  F  Fn  A )
2 offval.2 . . . . 5  |-  ( ph  ->  G  Fn  B )
3 offval.3 . . . . 5  |-  ( ph  ->  A  e.  V )
4 offval.4 . . . . 5  |-  ( ph  ->  B  e.  W )
5 offval.5 . . . . 5  |-  ( A  i^i  B )  =  S
6 eqidd 2140 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( F `  x ) )
7 eqidd 2140 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  ( G `  x ) )
81, 2, 3, 4, 5, 6, 7offval 5989 . . . 4  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) )
98fveq1d 5423 . . 3  |-  ( ph  ->  ( ( F  oF R G ) `
 X )  =  ( ( x  e.  S  |->  ( ( F `
 x ) R ( G `  x
) ) ) `  X ) )
109adantr 274 . 2  |-  ( (
ph  /\  X  e.  S )  ->  (
( F  oF R G ) `  X )  =  ( ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) `  X
) )
11 eqid 2139 . . 3  |-  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) )  =  ( x  e.  S  |->  ( ( F `
 x ) R ( G `  x
) ) )
12 fveq2 5421 . . . 4  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
13 fveq2 5421 . . . 4  |-  ( x  =  X  ->  ( G `  x )  =  ( G `  X ) )
1412, 13oveq12d 5792 . . 3  |-  ( x  =  X  ->  (
( F `  x
) R ( G `
 x ) )  =  ( ( F `
 X ) R ( G `  X
) ) )
15 simpr 109 . . 3  |-  ( (
ph  /\  X  e.  S )  ->  X  e.  S )
16 inss1 3296 . . . . . . . 8  |-  ( A  i^i  B )  C_  A
175, 16eqsstrri 3130 . . . . . . 7  |-  S  C_  A
1817sseli 3093 . . . . . 6  |-  ( X  e.  S  ->  X  e.  A )
19 ofval.6 . . . . . 6  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
2018, 19sylan2 284 . . . . 5  |-  ( (
ph  /\  X  e.  S )  ->  ( F `  X )  =  C )
21 inss2 3297 . . . . . . . 8  |-  ( A  i^i  B )  C_  B
225, 21eqsstrri 3130 . . . . . . 7  |-  S  C_  B
2322sseli 3093 . . . . . 6  |-  ( X  e.  S  ->  X  e.  B )
24 ofval.7 . . . . . 6  |-  ( (
ph  /\  X  e.  B )  ->  ( G `  X )  =  D )
2523, 24sylan2 284 . . . . 5  |-  ( (
ph  /\  X  e.  S )  ->  ( G `  X )  =  D )
2620, 25oveq12d 5792 . . . 4  |-  ( (
ph  /\  X  e.  S )  ->  (
( F `  X
) R ( G `
 X ) )  =  ( C R D ) )
27 ofval.8 . . . 4  |-  ( (
ph  /\  X  e.  S )  ->  ( C R D )  e.  U )
2826, 27eqeltrd 2216 . . 3  |-  ( (
ph  /\  X  e.  S )  ->  (
( F `  X
) R ( G `
 X ) )  e.  U )
2911, 14, 15, 28fvmptd3 5514 . 2  |-  ( (
ph  /\  X  e.  S )  ->  (
( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) `  X
)  =  ( ( F `  X ) R ( G `  X ) ) )
3010, 29, 263eqtrd 2176 1  |-  ( (
ph  /\  X  e.  S )  ->  (
( F  oF R G ) `  X )  =  ( C R D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480    i^i cin 3070    |-> cmpt 3989    Fn wfn 5118   ` cfv 5123  (class class class)co 5774    oFcof 5980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982
This theorem is referenced by:  offeq  5995  dvaddxxbr  12834  dvmulxxbr  12835
  Copyright terms: Public domain W3C validator