ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofvalg Unicode version

Theorem ofvalg 6228
Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.)
Hypotheses
Ref Expression
offval.1  |-  ( ph  ->  F  Fn  A )
offval.2  |-  ( ph  ->  G  Fn  B )
offval.3  |-  ( ph  ->  A  e.  V )
offval.4  |-  ( ph  ->  B  e.  W )
offval.5  |-  ( A  i^i  B )  =  S
ofval.6  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
ofval.7  |-  ( (
ph  /\  X  e.  B )  ->  ( G `  X )  =  D )
ofval.8  |-  ( (
ph  /\  X  e.  S )  ->  ( C R D )  e.  U )
Assertion
Ref Expression
ofvalg  |-  ( (
ph  /\  X  e.  S )  ->  (
( F  oF R G ) `  X )  =  ( C R D ) )

Proof of Theorem ofvalg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . 5  |-  ( ph  ->  F  Fn  A )
2 offval.2 . . . . 5  |-  ( ph  ->  G  Fn  B )
3 offval.3 . . . . 5  |-  ( ph  ->  A  e.  V )
4 offval.4 . . . . 5  |-  ( ph  ->  B  e.  W )
5 offval.5 . . . . 5  |-  ( A  i^i  B )  =  S
6 eqidd 2230 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( F `  x ) )
7 eqidd 2230 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  ( G `  x ) )
81, 2, 3, 4, 5, 6, 7offval 6226 . . . 4  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) )
98fveq1d 5629 . . 3  |-  ( ph  ->  ( ( F  oF R G ) `
 X )  =  ( ( x  e.  S  |->  ( ( F `
 x ) R ( G `  x
) ) ) `  X ) )
109adantr 276 . 2  |-  ( (
ph  /\  X  e.  S )  ->  (
( F  oF R G ) `  X )  =  ( ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) `  X
) )
11 eqid 2229 . . 3  |-  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) )  =  ( x  e.  S  |->  ( ( F `
 x ) R ( G `  x
) ) )
12 fveq2 5627 . . . 4  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
13 fveq2 5627 . . . 4  |-  ( x  =  X  ->  ( G `  x )  =  ( G `  X ) )
1412, 13oveq12d 6019 . . 3  |-  ( x  =  X  ->  (
( F `  x
) R ( G `
 x ) )  =  ( ( F `
 X ) R ( G `  X
) ) )
15 simpr 110 . . 3  |-  ( (
ph  /\  X  e.  S )  ->  X  e.  S )
16 inss1 3424 . . . . . . . 8  |-  ( A  i^i  B )  C_  A
175, 16eqsstrri 3257 . . . . . . 7  |-  S  C_  A
1817sseli 3220 . . . . . 6  |-  ( X  e.  S  ->  X  e.  A )
19 ofval.6 . . . . . 6  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
2018, 19sylan2 286 . . . . 5  |-  ( (
ph  /\  X  e.  S )  ->  ( F `  X )  =  C )
21 inss2 3425 . . . . . . . 8  |-  ( A  i^i  B )  C_  B
225, 21eqsstrri 3257 . . . . . . 7  |-  S  C_  B
2322sseli 3220 . . . . . 6  |-  ( X  e.  S  ->  X  e.  B )
24 ofval.7 . . . . . 6  |-  ( (
ph  /\  X  e.  B )  ->  ( G `  X )  =  D )
2523, 24sylan2 286 . . . . 5  |-  ( (
ph  /\  X  e.  S )  ->  ( G `  X )  =  D )
2620, 25oveq12d 6019 . . . 4  |-  ( (
ph  /\  X  e.  S )  ->  (
( F `  X
) R ( G `
 X ) )  =  ( C R D ) )
27 ofval.8 . . . 4  |-  ( (
ph  /\  X  e.  S )  ->  ( C R D )  e.  U )
2826, 27eqeltrd 2306 . . 3  |-  ( (
ph  /\  X  e.  S )  ->  (
( F `  X
) R ( G `
 X ) )  e.  U )
2911, 14, 15, 28fvmptd3 5728 . 2  |-  ( (
ph  /\  X  e.  S )  ->  (
( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) `  X
)  =  ( ( F `  X ) R ( G `  X ) ) )
3010, 29, 263eqtrd 2266 1  |-  ( (
ph  /\  X  e.  S )  ->  (
( F  oF R G ) `  X )  =  ( C R D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    i^i cin 3196    |-> cmpt 4145    Fn wfn 5313   ` cfv 5318  (class class class)co 6001    oFcof 6216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-of 6218
This theorem is referenced by:  offeq  6232  ofc1g  6240  ofc2g  6241  ofnegsub  9109  gsumfzmptfidmadd  13876  mplsubgfilemcl  14663  dvaddxxbr  15375  dvmulxxbr  15376  plyaddlem1  15421
  Copyright terms: Public domain W3C validator