ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofvalg Unicode version

Theorem ofvalg 6191
Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.)
Hypotheses
Ref Expression
offval.1  |-  ( ph  ->  F  Fn  A )
offval.2  |-  ( ph  ->  G  Fn  B )
offval.3  |-  ( ph  ->  A  e.  V )
offval.4  |-  ( ph  ->  B  e.  W )
offval.5  |-  ( A  i^i  B )  =  S
ofval.6  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
ofval.7  |-  ( (
ph  /\  X  e.  B )  ->  ( G `  X )  =  D )
ofval.8  |-  ( (
ph  /\  X  e.  S )  ->  ( C R D )  e.  U )
Assertion
Ref Expression
ofvalg  |-  ( (
ph  /\  X  e.  S )  ->  (
( F  oF R G ) `  X )  =  ( C R D ) )

Proof of Theorem ofvalg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . 5  |-  ( ph  ->  F  Fn  A )
2 offval.2 . . . . 5  |-  ( ph  ->  G  Fn  B )
3 offval.3 . . . . 5  |-  ( ph  ->  A  e.  V )
4 offval.4 . . . . 5  |-  ( ph  ->  B  e.  W )
5 offval.5 . . . . 5  |-  ( A  i^i  B )  =  S
6 eqidd 2208 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( F `  x ) )
7 eqidd 2208 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  ( G `  x ) )
81, 2, 3, 4, 5, 6, 7offval 6189 . . . 4  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) )
98fveq1d 5601 . . 3  |-  ( ph  ->  ( ( F  oF R G ) `
 X )  =  ( ( x  e.  S  |->  ( ( F `
 x ) R ( G `  x
) ) ) `  X ) )
109adantr 276 . 2  |-  ( (
ph  /\  X  e.  S )  ->  (
( F  oF R G ) `  X )  =  ( ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) `  X
) )
11 eqid 2207 . . 3  |-  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) )  =  ( x  e.  S  |->  ( ( F `
 x ) R ( G `  x
) ) )
12 fveq2 5599 . . . 4  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
13 fveq2 5599 . . . 4  |-  ( x  =  X  ->  ( G `  x )  =  ( G `  X ) )
1412, 13oveq12d 5985 . . 3  |-  ( x  =  X  ->  (
( F `  x
) R ( G `
 x ) )  =  ( ( F `
 X ) R ( G `  X
) ) )
15 simpr 110 . . 3  |-  ( (
ph  /\  X  e.  S )  ->  X  e.  S )
16 inss1 3401 . . . . . . . 8  |-  ( A  i^i  B )  C_  A
175, 16eqsstrri 3234 . . . . . . 7  |-  S  C_  A
1817sseli 3197 . . . . . 6  |-  ( X  e.  S  ->  X  e.  A )
19 ofval.6 . . . . . 6  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
2018, 19sylan2 286 . . . . 5  |-  ( (
ph  /\  X  e.  S )  ->  ( F `  X )  =  C )
21 inss2 3402 . . . . . . . 8  |-  ( A  i^i  B )  C_  B
225, 21eqsstrri 3234 . . . . . . 7  |-  S  C_  B
2322sseli 3197 . . . . . 6  |-  ( X  e.  S  ->  X  e.  B )
24 ofval.7 . . . . . 6  |-  ( (
ph  /\  X  e.  B )  ->  ( G `  X )  =  D )
2523, 24sylan2 286 . . . . 5  |-  ( (
ph  /\  X  e.  S )  ->  ( G `  X )  =  D )
2620, 25oveq12d 5985 . . . 4  |-  ( (
ph  /\  X  e.  S )  ->  (
( F `  X
) R ( G `
 X ) )  =  ( C R D ) )
27 ofval.8 . . . 4  |-  ( (
ph  /\  X  e.  S )  ->  ( C R D )  e.  U )
2826, 27eqeltrd 2284 . . 3  |-  ( (
ph  /\  X  e.  S )  ->  (
( F `  X
) R ( G `
 X ) )  e.  U )
2911, 14, 15, 28fvmptd3 5696 . 2  |-  ( (
ph  /\  X  e.  S )  ->  (
( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) `  X
)  =  ( ( F `  X ) R ( G `  X ) ) )
3010, 29, 263eqtrd 2244 1  |-  ( (
ph  /\  X  e.  S )  ->  (
( F  oF R G ) `  X )  =  ( C R D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    i^i cin 3173    |-> cmpt 4121    Fn wfn 5285   ` cfv 5290  (class class class)co 5967    oFcof 6179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-of 6181
This theorem is referenced by:  offeq  6195  ofc1g  6203  ofc2g  6204  ofnegsub  9070  gsumfzmptfidmadd  13790  mplsubgfilemcl  14576  dvaddxxbr  15288  dvmulxxbr  15289  plyaddlem1  15334
  Copyright terms: Public domain W3C validator