ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofvalg Unicode version

Theorem ofvalg 6059
Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.)
Hypotheses
Ref Expression
offval.1  |-  ( ph  ->  F  Fn  A )
offval.2  |-  ( ph  ->  G  Fn  B )
offval.3  |-  ( ph  ->  A  e.  V )
offval.4  |-  ( ph  ->  B  e.  W )
offval.5  |-  ( A  i^i  B )  =  S
ofval.6  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
ofval.7  |-  ( (
ph  /\  X  e.  B )  ->  ( G `  X )  =  D )
ofval.8  |-  ( (
ph  /\  X  e.  S )  ->  ( C R D )  e.  U )
Assertion
Ref Expression
ofvalg  |-  ( (
ph  /\  X  e.  S )  ->  (
( F  oF R G ) `  X )  =  ( C R D ) )

Proof of Theorem ofvalg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . 5  |-  ( ph  ->  F  Fn  A )
2 offval.2 . . . . 5  |-  ( ph  ->  G  Fn  B )
3 offval.3 . . . . 5  |-  ( ph  ->  A  e.  V )
4 offval.4 . . . . 5  |-  ( ph  ->  B  e.  W )
5 offval.5 . . . . 5  |-  ( A  i^i  B )  =  S
6 eqidd 2166 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( F `  x ) )
7 eqidd 2166 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  ( G `  x ) )
81, 2, 3, 4, 5, 6, 7offval 6057 . . . 4  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) )
98fveq1d 5488 . . 3  |-  ( ph  ->  ( ( F  oF R G ) `
 X )  =  ( ( x  e.  S  |->  ( ( F `
 x ) R ( G `  x
) ) ) `  X ) )
109adantr 274 . 2  |-  ( (
ph  /\  X  e.  S )  ->  (
( F  oF R G ) `  X )  =  ( ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) `  X
) )
11 eqid 2165 . . 3  |-  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) )  =  ( x  e.  S  |->  ( ( F `
 x ) R ( G `  x
) ) )
12 fveq2 5486 . . . 4  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
13 fveq2 5486 . . . 4  |-  ( x  =  X  ->  ( G `  x )  =  ( G `  X ) )
1412, 13oveq12d 5860 . . 3  |-  ( x  =  X  ->  (
( F `  x
) R ( G `
 x ) )  =  ( ( F `
 X ) R ( G `  X
) ) )
15 simpr 109 . . 3  |-  ( (
ph  /\  X  e.  S )  ->  X  e.  S )
16 inss1 3342 . . . . . . . 8  |-  ( A  i^i  B )  C_  A
175, 16eqsstrri 3175 . . . . . . 7  |-  S  C_  A
1817sseli 3138 . . . . . 6  |-  ( X  e.  S  ->  X  e.  A )
19 ofval.6 . . . . . 6  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
2018, 19sylan2 284 . . . . 5  |-  ( (
ph  /\  X  e.  S )  ->  ( F `  X )  =  C )
21 inss2 3343 . . . . . . . 8  |-  ( A  i^i  B )  C_  B
225, 21eqsstrri 3175 . . . . . . 7  |-  S  C_  B
2322sseli 3138 . . . . . 6  |-  ( X  e.  S  ->  X  e.  B )
24 ofval.7 . . . . . 6  |-  ( (
ph  /\  X  e.  B )  ->  ( G `  X )  =  D )
2523, 24sylan2 284 . . . . 5  |-  ( (
ph  /\  X  e.  S )  ->  ( G `  X )  =  D )
2620, 25oveq12d 5860 . . . 4  |-  ( (
ph  /\  X  e.  S )  ->  (
( F `  X
) R ( G `
 X ) )  =  ( C R D ) )
27 ofval.8 . . . 4  |-  ( (
ph  /\  X  e.  S )  ->  ( C R D )  e.  U )
2826, 27eqeltrd 2243 . . 3  |-  ( (
ph  /\  X  e.  S )  ->  (
( F `  X
) R ( G `
 X ) )  e.  U )
2911, 14, 15, 28fvmptd3 5579 . 2  |-  ( (
ph  /\  X  e.  S )  ->  (
( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) `  X
)  =  ( ( F `  X ) R ( G `  X ) ) )
3010, 29, 263eqtrd 2202 1  |-  ( (
ph  /\  X  e.  S )  ->  (
( F  oF R G ) `  X )  =  ( C R D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    i^i cin 3115    |-> cmpt 4043    Fn wfn 5183   ` cfv 5188  (class class class)co 5842    oFcof 6048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050
This theorem is referenced by:  offeq  6063  dvaddxxbr  13305  dvmulxxbr  13306
  Copyright terms: Public domain W3C validator