ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofco Unicode version

Theorem ofco 6068
Description: The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014.)
Hypotheses
Ref Expression
ofco.1  |-  ( ph  ->  F  Fn  A )
ofco.2  |-  ( ph  ->  G  Fn  B )
ofco.3  |-  ( ph  ->  H : D --> C )
ofco.4  |-  ( ph  ->  A  e.  V )
ofco.5  |-  ( ph  ->  B  e.  W )
ofco.6  |-  ( ph  ->  D  e.  X )
ofco.7  |-  ( A  i^i  B )  =  C
Assertion
Ref Expression
ofco  |-  ( ph  ->  ( ( F  oF R G )  o.  H )  =  ( ( F  o.  H )  oF R ( G  o.  H ) ) )

Proof of Theorem ofco
Dummy variables  y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofco.3 . . . 4  |-  ( ph  ->  H : D --> C )
21ffvelrnda 5620 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( H `  x )  e.  C )
31feqmptd 5539 . . 3  |-  ( ph  ->  H  =  ( x  e.  D  |->  ( H `
 x ) ) )
4 ofco.1 . . . 4  |-  ( ph  ->  F  Fn  A )
5 ofco.2 . . . 4  |-  ( ph  ->  G  Fn  B )
6 ofco.4 . . . 4  |-  ( ph  ->  A  e.  V )
7 ofco.5 . . . 4  |-  ( ph  ->  B  e.  W )
8 ofco.7 . . . 4  |-  ( A  i^i  B )  =  C
9 eqidd 2166 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  =  ( F `  y ) )
10 eqidd 2166 . . . 4  |-  ( (
ph  /\  y  e.  B )  ->  ( G `  y )  =  ( G `  y ) )
114, 5, 6, 7, 8, 9, 10offval 6057 . . 3  |-  ( ph  ->  ( F  oF R G )  =  ( y  e.  C  |->  ( ( F `  y ) R ( G `  y ) ) ) )
12 fveq2 5486 . . . 4  |-  ( y  =  ( H `  x )  ->  ( F `  y )  =  ( F `  ( H `  x ) ) )
13 fveq2 5486 . . . 4  |-  ( y  =  ( H `  x )  ->  ( G `  y )  =  ( G `  ( H `  x ) ) )
1412, 13oveq12d 5860 . . 3  |-  ( y  =  ( H `  x )  ->  (
( F `  y
) R ( G `
 y ) )  =  ( ( F `
 ( H `  x ) ) R ( G `  ( H `  x )
) ) )
152, 3, 11, 14fmptco 5651 . 2  |-  ( ph  ->  ( ( F  oF R G )  o.  H )  =  ( x  e.  D  |->  ( ( F `  ( H `  x ) ) R ( G `
 ( H `  x ) ) ) ) )
16 inss1 3342 . . . . . 6  |-  ( A  i^i  B )  C_  A
178, 16eqsstrri 3175 . . . . 5  |-  C  C_  A
18 fss 5349 . . . . 5  |-  ( ( H : D --> C  /\  C  C_  A )  ->  H : D --> A )
191, 17, 18sylancl 410 . . . 4  |-  ( ph  ->  H : D --> A )
20 fnfco 5362 . . . 4  |-  ( ( F  Fn  A  /\  H : D --> A )  ->  ( F  o.  H )  Fn  D
)
214, 19, 20syl2anc 409 . . 3  |-  ( ph  ->  ( F  o.  H
)  Fn  D )
22 inss2 3343 . . . . . 6  |-  ( A  i^i  B )  C_  B
238, 22eqsstrri 3175 . . . . 5  |-  C  C_  B
24 fss 5349 . . . . 5  |-  ( ( H : D --> C  /\  C  C_  B )  ->  H : D --> B )
251, 23, 24sylancl 410 . . . 4  |-  ( ph  ->  H : D --> B )
26 fnfco 5362 . . . 4  |-  ( ( G  Fn  B  /\  H : D --> B )  ->  ( G  o.  H )  Fn  D
)
275, 25, 26syl2anc 409 . . 3  |-  ( ph  ->  ( G  o.  H
)  Fn  D )
28 ofco.6 . . 3  |-  ( ph  ->  D  e.  X )
29 inidm 3331 . . 3  |-  ( D  i^i  D )  =  D
30 ffn 5337 . . . . 5  |-  ( H : D --> C  ->  H  Fn  D )
311, 30syl 14 . . . 4  |-  ( ph  ->  H  Fn  D )
32 fvco2 5555 . . . 4  |-  ( ( H  Fn  D  /\  x  e.  D )  ->  ( ( F  o.  H ) `  x
)  =  ( F `
 ( H `  x ) ) )
3331, 32sylan 281 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  (
( F  o.  H
) `  x )  =  ( F `  ( H `  x ) ) )
34 fvco2 5555 . . . 4  |-  ( ( H  Fn  D  /\  x  e.  D )  ->  ( ( G  o.  H ) `  x
)  =  ( G `
 ( H `  x ) ) )
3531, 34sylan 281 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  (
( G  o.  H
) `  x )  =  ( G `  ( H `  x ) ) )
3621, 27, 28, 28, 29, 33, 35offval 6057 . 2  |-  ( ph  ->  ( ( F  o.  H )  oF R ( G  o.  H ) )  =  ( x  e.  D  |->  ( ( F `  ( H `  x ) ) R ( G `
 ( H `  x ) ) ) ) )
3715, 36eqtr4d 2201 1  |-  ( ph  ->  ( ( F  oF R G )  o.  H )  =  ( ( F  o.  H )  oF R ( G  o.  H ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    i^i cin 3115    C_ wss 3116    |-> cmpt 4043    o. ccom 4608    Fn wfn 5183   -->wf 5184   ` cfv 5188  (class class class)co 5842    oFcof 6048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator