ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofco Unicode version

Theorem ofco 5993
Description: The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014.)
Hypotheses
Ref Expression
ofco.1  |-  ( ph  ->  F  Fn  A )
ofco.2  |-  ( ph  ->  G  Fn  B )
ofco.3  |-  ( ph  ->  H : D --> C )
ofco.4  |-  ( ph  ->  A  e.  V )
ofco.5  |-  ( ph  ->  B  e.  W )
ofco.6  |-  ( ph  ->  D  e.  X )
ofco.7  |-  ( A  i^i  B )  =  C
Assertion
Ref Expression
ofco  |-  ( ph  ->  ( ( F  oF R G )  o.  H )  =  ( ( F  o.  H )  oF R ( G  o.  H ) ) )

Proof of Theorem ofco
Dummy variables  y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofco.3 . . . 4  |-  ( ph  ->  H : D --> C )
21ffvelrnda 5548 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( H `  x )  e.  C )
31feqmptd 5467 . . 3  |-  ( ph  ->  H  =  ( x  e.  D  |->  ( H `
 x ) ) )
4 ofco.1 . . . 4  |-  ( ph  ->  F  Fn  A )
5 ofco.2 . . . 4  |-  ( ph  ->  G  Fn  B )
6 ofco.4 . . . 4  |-  ( ph  ->  A  e.  V )
7 ofco.5 . . . 4  |-  ( ph  ->  B  e.  W )
8 ofco.7 . . . 4  |-  ( A  i^i  B )  =  C
9 eqidd 2138 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  =  ( F `  y ) )
10 eqidd 2138 . . . 4  |-  ( (
ph  /\  y  e.  B )  ->  ( G `  y )  =  ( G `  y ) )
114, 5, 6, 7, 8, 9, 10offval 5982 . . 3  |-  ( ph  ->  ( F  oF R G )  =  ( y  e.  C  |->  ( ( F `  y ) R ( G `  y ) ) ) )
12 fveq2 5414 . . . 4  |-  ( y  =  ( H `  x )  ->  ( F `  y )  =  ( F `  ( H `  x ) ) )
13 fveq2 5414 . . . 4  |-  ( y  =  ( H `  x )  ->  ( G `  y )  =  ( G `  ( H `  x ) ) )
1412, 13oveq12d 5785 . . 3  |-  ( y  =  ( H `  x )  ->  (
( F `  y
) R ( G `
 y ) )  =  ( ( F `
 ( H `  x ) ) R ( G `  ( H `  x )
) ) )
152, 3, 11, 14fmptco 5579 . 2  |-  ( ph  ->  ( ( F  oF R G )  o.  H )  =  ( x  e.  D  |->  ( ( F `  ( H `  x ) ) R ( G `
 ( H `  x ) ) ) ) )
16 inss1 3291 . . . . . 6  |-  ( A  i^i  B )  C_  A
178, 16eqsstrri 3125 . . . . 5  |-  C  C_  A
18 fss 5279 . . . . 5  |-  ( ( H : D --> C  /\  C  C_  A )  ->  H : D --> A )
191, 17, 18sylancl 409 . . . 4  |-  ( ph  ->  H : D --> A )
20 fnfco 5292 . . . 4  |-  ( ( F  Fn  A  /\  H : D --> A )  ->  ( F  o.  H )  Fn  D
)
214, 19, 20syl2anc 408 . . 3  |-  ( ph  ->  ( F  o.  H
)  Fn  D )
22 inss2 3292 . . . . . 6  |-  ( A  i^i  B )  C_  B
238, 22eqsstrri 3125 . . . . 5  |-  C  C_  B
24 fss 5279 . . . . 5  |-  ( ( H : D --> C  /\  C  C_  B )  ->  H : D --> B )
251, 23, 24sylancl 409 . . . 4  |-  ( ph  ->  H : D --> B )
26 fnfco 5292 . . . 4  |-  ( ( G  Fn  B  /\  H : D --> B )  ->  ( G  o.  H )  Fn  D
)
275, 25, 26syl2anc 408 . . 3  |-  ( ph  ->  ( G  o.  H
)  Fn  D )
28 ofco.6 . . 3  |-  ( ph  ->  D  e.  X )
29 inidm 3280 . . 3  |-  ( D  i^i  D )  =  D
30 ffn 5267 . . . . 5  |-  ( H : D --> C  ->  H  Fn  D )
311, 30syl 14 . . . 4  |-  ( ph  ->  H  Fn  D )
32 fvco2 5483 . . . 4  |-  ( ( H  Fn  D  /\  x  e.  D )  ->  ( ( F  o.  H ) `  x
)  =  ( F `
 ( H `  x ) ) )
3331, 32sylan 281 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  (
( F  o.  H
) `  x )  =  ( F `  ( H `  x ) ) )
34 fvco2 5483 . . . 4  |-  ( ( H  Fn  D  /\  x  e.  D )  ->  ( ( G  o.  H ) `  x
)  =  ( G `
 ( H `  x ) ) )
3531, 34sylan 281 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  (
( G  o.  H
) `  x )  =  ( G `  ( H `  x ) ) )
3621, 27, 28, 28, 29, 33, 35offval 5982 . 2  |-  ( ph  ->  ( ( F  o.  H )  oF R ( G  o.  H ) )  =  ( x  e.  D  |->  ( ( F `  ( H `  x ) ) R ( G `
 ( H `  x ) ) ) ) )
3715, 36eqtr4d 2173 1  |-  ( ph  ->  ( ( F  oF R G )  o.  H )  =  ( ( F  o.  H )  oF R ( G  o.  H ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480    i^i cin 3065    C_ wss 3066    |-> cmpt 3984    o. ccom 4538    Fn wfn 5113   -->wf 5114   ` cfv 5118  (class class class)co 5767    oFcof 5973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-of 5975
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator