ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofco Unicode version

Theorem ofco 5887
Description: The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014.)
Hypotheses
Ref Expression
ofco.1  |-  ( ph  ->  F  Fn  A )
ofco.2  |-  ( ph  ->  G  Fn  B )
ofco.3  |-  ( ph  ->  H : D --> C )
ofco.4  |-  ( ph  ->  A  e.  V )
ofco.5  |-  ( ph  ->  B  e.  W )
ofco.6  |-  ( ph  ->  D  e.  X )
ofco.7  |-  ( A  i^i  B )  =  C
Assertion
Ref Expression
ofco  |-  ( ph  ->  ( ( F  oF R G )  o.  H )  =  ( ( F  o.  H )  oF R ( G  o.  H ) ) )

Proof of Theorem ofco
Dummy variables  y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofco.3 . . . 4  |-  ( ph  ->  H : D --> C )
21ffvelrnda 5448 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( H `  x )  e.  C )
31feqmptd 5370 . . 3  |-  ( ph  ->  H  =  ( x  e.  D  |->  ( H `
 x ) ) )
4 ofco.1 . . . 4  |-  ( ph  ->  F  Fn  A )
5 ofco.2 . . . 4  |-  ( ph  ->  G  Fn  B )
6 ofco.4 . . . 4  |-  ( ph  ->  A  e.  V )
7 ofco.5 . . . 4  |-  ( ph  ->  B  e.  W )
8 ofco.7 . . . 4  |-  ( A  i^i  B )  =  C
9 eqidd 2090 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  =  ( F `  y ) )
10 eqidd 2090 . . . 4  |-  ( (
ph  /\  y  e.  B )  ->  ( G `  y )  =  ( G `  y ) )
114, 5, 6, 7, 8, 9, 10offval 5877 . . 3  |-  ( ph  ->  ( F  oF R G )  =  ( y  e.  C  |->  ( ( F `  y ) R ( G `  y ) ) ) )
12 fveq2 5318 . . . 4  |-  ( y  =  ( H `  x )  ->  ( F `  y )  =  ( F `  ( H `  x ) ) )
13 fveq2 5318 . . . 4  |-  ( y  =  ( H `  x )  ->  ( G `  y )  =  ( G `  ( H `  x ) ) )
1412, 13oveq12d 5684 . . 3  |-  ( y  =  ( H `  x )  ->  (
( F `  y
) R ( G `
 y ) )  =  ( ( F `
 ( H `  x ) ) R ( G `  ( H `  x )
) ) )
152, 3, 11, 14fmptco 5478 . 2  |-  ( ph  ->  ( ( F  oF R G )  o.  H )  =  ( x  e.  D  |->  ( ( F `  ( H `  x ) ) R ( G `
 ( H `  x ) ) ) ) )
16 inss1 3221 . . . . . 6  |-  ( A  i^i  B )  C_  A
178, 16eqsstr3i 3058 . . . . 5  |-  C  C_  A
18 fss 5185 . . . . 5  |-  ( ( H : D --> C  /\  C  C_  A )  ->  H : D --> A )
191, 17, 18sylancl 405 . . . 4  |-  ( ph  ->  H : D --> A )
20 fnfco 5198 . . . 4  |-  ( ( F  Fn  A  /\  H : D --> A )  ->  ( F  o.  H )  Fn  D
)
214, 19, 20syl2anc 404 . . 3  |-  ( ph  ->  ( F  o.  H
)  Fn  D )
22 inss2 3222 . . . . . 6  |-  ( A  i^i  B )  C_  B
238, 22eqsstr3i 3058 . . . . 5  |-  C  C_  B
24 fss 5185 . . . . 5  |-  ( ( H : D --> C  /\  C  C_  B )  ->  H : D --> B )
251, 23, 24sylancl 405 . . . 4  |-  ( ph  ->  H : D --> B )
26 fnfco 5198 . . . 4  |-  ( ( G  Fn  B  /\  H : D --> B )  ->  ( G  o.  H )  Fn  D
)
275, 25, 26syl2anc 404 . . 3  |-  ( ph  ->  ( G  o.  H
)  Fn  D )
28 ofco.6 . . 3  |-  ( ph  ->  D  e.  X )
29 inidm 3210 . . 3  |-  ( D  i^i  D )  =  D
30 ffn 5174 . . . . 5  |-  ( H : D --> C  ->  H  Fn  D )
311, 30syl 14 . . . 4  |-  ( ph  ->  H  Fn  D )
32 fvco2 5386 . . . 4  |-  ( ( H  Fn  D  /\  x  e.  D )  ->  ( ( F  o.  H ) `  x
)  =  ( F `
 ( H `  x ) ) )
3331, 32sylan 278 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  (
( F  o.  H
) `  x )  =  ( F `  ( H `  x ) ) )
34 fvco2 5386 . . . 4  |-  ( ( H  Fn  D  /\  x  e.  D )  ->  ( ( G  o.  H ) `  x
)  =  ( G `
 ( H `  x ) ) )
3531, 34sylan 278 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  (
( G  o.  H
) `  x )  =  ( G `  ( H `  x ) ) )
3621, 27, 28, 28, 29, 33, 35offval 5877 . 2  |-  ( ph  ->  ( ( F  o.  H )  oF R ( G  o.  H ) )  =  ( x  e.  D  |->  ( ( F `  ( H `  x ) ) R ( G `
 ( H `  x ) ) ) ) )
3715, 36eqtr4d 2124 1  |-  ( ph  ->  ( ( F  oF R G )  o.  H )  =  ( ( F  o.  H )  oF R ( G  o.  H ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439    i^i cin 2999    C_ wss 3000    |-> cmpt 3905    o. ccom 4455    Fn wfn 5023   -->wf 5024   ` cfv 5028  (class class class)co 5666    oFcof 5868
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-setind 4366
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-of 5870
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator