Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ofco | Unicode version |
Description: The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014.) |
Ref | Expression |
---|---|
ofco.1 | |
ofco.2 | |
ofco.3 | |
ofco.4 | |
ofco.5 | |
ofco.6 | |
ofco.7 |
Ref | Expression |
---|---|
ofco |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofco.3 | . . . 4 | |
2 | 1 | ffvelrnda 5631 | . . 3 |
3 | 1 | feqmptd 5549 | . . 3 |
4 | ofco.1 | . . . 4 | |
5 | ofco.2 | . . . 4 | |
6 | ofco.4 | . . . 4 | |
7 | ofco.5 | . . . 4 | |
8 | ofco.7 | . . . 4 | |
9 | eqidd 2171 | . . . 4 | |
10 | eqidd 2171 | . . . 4 | |
11 | 4, 5, 6, 7, 8, 9, 10 | offval 6068 | . . 3 |
12 | fveq2 5496 | . . . 4 | |
13 | fveq2 5496 | . . . 4 | |
14 | 12, 13 | oveq12d 5871 | . . 3 |
15 | 2, 3, 11, 14 | fmptco 5662 | . 2 |
16 | inss1 3347 | . . . . . 6 | |
17 | 8, 16 | eqsstrri 3180 | . . . . 5 |
18 | fss 5359 | . . . . 5 | |
19 | 1, 17, 18 | sylancl 411 | . . . 4 |
20 | fnfco 5372 | . . . 4 | |
21 | 4, 19, 20 | syl2anc 409 | . . 3 |
22 | inss2 3348 | . . . . . 6 | |
23 | 8, 22 | eqsstrri 3180 | . . . . 5 |
24 | fss 5359 | . . . . 5 | |
25 | 1, 23, 24 | sylancl 411 | . . . 4 |
26 | fnfco 5372 | . . . 4 | |
27 | 5, 25, 26 | syl2anc 409 | . . 3 |
28 | ofco.6 | . . 3 | |
29 | inidm 3336 | . . 3 | |
30 | ffn 5347 | . . . . 5 | |
31 | 1, 30 | syl 14 | . . . 4 |
32 | fvco2 5565 | . . . 4 | |
33 | 31, 32 | sylan 281 | . . 3 |
34 | fvco2 5565 | . . . 4 | |
35 | 31, 34 | sylan 281 | . . 3 |
36 | 21, 27, 28, 28, 29, 33, 35 | offval 6068 | . 2 |
37 | 15, 36 | eqtr4d 2206 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cin 3120 wss 3121 cmpt 4050 ccom 4615 wfn 5193 wf 5194 cfv 5198 (class class class)co 5853 cof 6059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-of 6061 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |