Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ofco | Unicode version |
Description: The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014.) |
Ref | Expression |
---|---|
ofco.1 | |
ofco.2 | |
ofco.3 | |
ofco.4 | |
ofco.5 | |
ofco.6 | |
ofco.7 |
Ref | Expression |
---|---|
ofco |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofco.3 | . . . 4 | |
2 | 1 | ffvelrnda 5595 | . . 3 |
3 | 1 | feqmptd 5514 | . . 3 |
4 | ofco.1 | . . . 4 | |
5 | ofco.2 | . . . 4 | |
6 | ofco.4 | . . . 4 | |
7 | ofco.5 | . . . 4 | |
8 | ofco.7 | . . . 4 | |
9 | eqidd 2155 | . . . 4 | |
10 | eqidd 2155 | . . . 4 | |
11 | 4, 5, 6, 7, 8, 9, 10 | offval 6029 | . . 3 |
12 | fveq2 5461 | . . . 4 | |
13 | fveq2 5461 | . . . 4 | |
14 | 12, 13 | oveq12d 5832 | . . 3 |
15 | 2, 3, 11, 14 | fmptco 5626 | . 2 |
16 | inss1 3323 | . . . . . 6 | |
17 | 8, 16 | eqsstrri 3157 | . . . . 5 |
18 | fss 5324 | . . . . 5 | |
19 | 1, 17, 18 | sylancl 410 | . . . 4 |
20 | fnfco 5337 | . . . 4 | |
21 | 4, 19, 20 | syl2anc 409 | . . 3 |
22 | inss2 3324 | . . . . . 6 | |
23 | 8, 22 | eqsstrri 3157 | . . . . 5 |
24 | fss 5324 | . . . . 5 | |
25 | 1, 23, 24 | sylancl 410 | . . . 4 |
26 | fnfco 5337 | . . . 4 | |
27 | 5, 25, 26 | syl2anc 409 | . . 3 |
28 | ofco.6 | . . 3 | |
29 | inidm 3312 | . . 3 | |
30 | ffn 5312 | . . . . 5 | |
31 | 1, 30 | syl 14 | . . . 4 |
32 | fvco2 5530 | . . . 4 | |
33 | 31, 32 | sylan 281 | . . 3 |
34 | fvco2 5530 | . . . 4 | |
35 | 31, 34 | sylan 281 | . . 3 |
36 | 21, 27, 28, 28, 29, 33, 35 | offval 6029 | . 2 |
37 | 15, 36 | eqtr4d 2190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1332 wcel 2125 cin 3097 wss 3098 cmpt 4021 ccom 4583 wfn 5158 wf 5159 cfv 5163 (class class class)co 5814 cof 6020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-setind 4490 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-of 6022 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |