Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ofco | Unicode version |
Description: The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014.) |
Ref | Expression |
---|---|
ofco.1 | |
ofco.2 | |
ofco.3 | |
ofco.4 | |
ofco.5 | |
ofco.6 | |
ofco.7 |
Ref | Expression |
---|---|
ofco |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofco.3 | . . . 4 | |
2 | 1 | ffvelrnda 5620 | . . 3 |
3 | 1 | feqmptd 5539 | . . 3 |
4 | ofco.1 | . . . 4 | |
5 | ofco.2 | . . . 4 | |
6 | ofco.4 | . . . 4 | |
7 | ofco.5 | . . . 4 | |
8 | ofco.7 | . . . 4 | |
9 | eqidd 2166 | . . . 4 | |
10 | eqidd 2166 | . . . 4 | |
11 | 4, 5, 6, 7, 8, 9, 10 | offval 6057 | . . 3 |
12 | fveq2 5486 | . . . 4 | |
13 | fveq2 5486 | . . . 4 | |
14 | 12, 13 | oveq12d 5860 | . . 3 |
15 | 2, 3, 11, 14 | fmptco 5651 | . 2 |
16 | inss1 3342 | . . . . . 6 | |
17 | 8, 16 | eqsstrri 3175 | . . . . 5 |
18 | fss 5349 | . . . . 5 | |
19 | 1, 17, 18 | sylancl 410 | . . . 4 |
20 | fnfco 5362 | . . . 4 | |
21 | 4, 19, 20 | syl2anc 409 | . . 3 |
22 | inss2 3343 | . . . . . 6 | |
23 | 8, 22 | eqsstrri 3175 | . . . . 5 |
24 | fss 5349 | . . . . 5 | |
25 | 1, 23, 24 | sylancl 410 | . . . 4 |
26 | fnfco 5362 | . . . 4 | |
27 | 5, 25, 26 | syl2anc 409 | . . 3 |
28 | ofco.6 | . . 3 | |
29 | inidm 3331 | . . 3 | |
30 | ffn 5337 | . . . . 5 | |
31 | 1, 30 | syl 14 | . . . 4 |
32 | fvco2 5555 | . . . 4 | |
33 | 31, 32 | sylan 281 | . . 3 |
34 | fvco2 5555 | . . . 4 | |
35 | 31, 34 | sylan 281 | . . 3 |
36 | 21, 27, 28, 28, 29, 33, 35 | offval 6057 | . 2 |
37 | 15, 36 | eqtr4d 2201 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cin 3115 wss 3116 cmpt 4043 ccom 4608 wfn 5183 wf 5184 cfv 5188 (class class class)co 5842 cof 6048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-of 6050 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |