ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrri GIF version

Theorem eqsstrri 3180
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.)
Hypotheses
Ref Expression
eqsstr3.1 𝐵 = 𝐴
eqsstr3.2 𝐵𝐶
Assertion
Ref Expression
eqsstrri 𝐴𝐶

Proof of Theorem eqsstrri
StepHypRef Expression
1 eqsstr3.1 . . 3 𝐵 = 𝐴
21eqcomi 2174 . 2 𝐴 = 𝐵
3 eqsstr3.2 . 2 𝐵𝐶
42, 3eqsstri 3179 1 𝐴𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134
This theorem is referenced by:  inss2  3348  dmv  4827  resasplitss  5377  ofrfval  6069  ofvalg  6070  ofrval  6071  off  6073  ofres  6075  ofco  6079  dftpos4  6242  smores2  6273  caseinj  7066  djuinj  7083  bcm1k  10694  bcpasc  10700
  Copyright terms: Public domain W3C validator