ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrri GIF version

Theorem eqsstrri 3225
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.)
Hypotheses
Ref Expression
eqsstr3.1 𝐵 = 𝐴
eqsstr3.2 𝐵𝐶
Assertion
Ref Expression
eqsstrri 𝐴𝐶

Proof of Theorem eqsstrri
StepHypRef Expression
1 eqsstr3.1 . . 3 𝐵 = 𝐴
21eqcomi 2208 . 2 𝐴 = 𝐵
3 eqsstr3.2 . 2 𝐵𝐶
42, 3eqsstri 3224 1 𝐴𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wss 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-in 3171  df-ss 3178
This theorem is referenced by:  inss2  3393  dmv  4893  resasplitss  5454  ofrfval  6166  ofvalg  6167  ofrval  6168  off  6170  ofres  6172  ofco  6176  dftpos4  6348  smores2  6379  caseinj  7190  djuinj  7207  bcm1k  10903  bcpasc  10909  nninfctlemfo  12303
  Copyright terms: Public domain W3C validator