ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erth2 Unicode version

Theorem erth2 6542
Description: Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
erth2.1  |-  ( ph  ->  R  Er  X )
erth2.2  |-  ( ph  ->  B  e.  X )
Assertion
Ref Expression
erth2  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )

Proof of Theorem erth2
StepHypRef Expression
1 erth2.1 . . 3  |-  ( ph  ->  R  Er  X )
21ersymb 6511 . 2  |-  ( ph  ->  ( A R B  <-> 
B R A ) )
3 erth2.2 . . . 4  |-  ( ph  ->  B  e.  X )
41, 3erth 6541 . . 3  |-  ( ph  ->  ( B R A  <->  [ B ] R  =  [ A ] R
) )
5 eqcom 2167 . . 3  |-  ( [ B ] R  =  [ A ] R  <->  [ A ] R  =  [ B ] R
)
64, 5bitrdi 195 . 2  |-  ( ph  ->  ( B R A  <->  [ A ] R  =  [ B ] R
) )
72, 6bitrd 187 1  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   class class class wbr 3981    Er wer 6494   [cec 6495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-sbc 2951  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982  df-opab 4043  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-er 6497  df-ec 6499
This theorem is referenced by:  qliftel  6577
  Copyright terms: Public domain W3C validator