ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erth2 Unicode version

Theorem erth2 6605
Description: Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
erth2.1  |-  ( ph  ->  R  Er  X )
erth2.2  |-  ( ph  ->  B  e.  X )
Assertion
Ref Expression
erth2  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )

Proof of Theorem erth2
StepHypRef Expression
1 erth2.1 . . 3  |-  ( ph  ->  R  Er  X )
21ersymb 6572 . 2  |-  ( ph  ->  ( A R B  <-> 
B R A ) )
3 erth2.2 . . . 4  |-  ( ph  ->  B  e.  X )
41, 3erth 6604 . . 3  |-  ( ph  ->  ( B R A  <->  [ B ] R  =  [ A ] R
) )
5 eqcom 2191 . . 3  |-  ( [ B ] R  =  [ A ] R  <->  [ A ] R  =  [ B ] R
)
64, 5bitrdi 196 . 2  |-  ( ph  ->  ( B R A  <->  [ A ] R  =  [ B ] R
) )
72, 6bitrd 188 1  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2160   class class class wbr 4018    Er wer 6555   [cec 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-er 6558  df-ec 6560
This theorem is referenced by:  qliftel  6640
  Copyright terms: Public domain W3C validator