ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erth2 Unicode version

Theorem erth2 6727
Description: Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
erth2.1  |-  ( ph  ->  R  Er  X )
erth2.2  |-  ( ph  ->  B  e.  X )
Assertion
Ref Expression
erth2  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )

Proof of Theorem erth2
StepHypRef Expression
1 erth2.1 . . 3  |-  ( ph  ->  R  Er  X )
21ersymb 6694 . 2  |-  ( ph  ->  ( A R B  <-> 
B R A ) )
3 erth2.2 . . . 4  |-  ( ph  ->  B  e.  X )
41, 3erth 6726 . . 3  |-  ( ph  ->  ( B R A  <->  [ B ] R  =  [ A ] R
) )
5 eqcom 2231 . . 3  |-  ( [ B ] R  =  [ A ] R  <->  [ A ] R  =  [ B ] R
)
64, 5bitrdi 196 . 2  |-  ( ph  ->  ( B R A  <->  [ A ] R  =  [ B ] R
) )
72, 6bitrd 188 1  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4083    Er wer 6677   [cec 6678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-er 6680  df-ec 6682
This theorem is referenced by:  qliftel  6762
  Copyright terms: Public domain W3C validator