![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > erth2 | GIF version |
Description: Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) |
Ref | Expression |
---|---|
erth2.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
erth2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
Ref | Expression |
---|---|
erth2 | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erth2.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
2 | 1 | ersymb 6603 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
3 | erth2.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
4 | 1, 3 | erth 6635 | . . 3 ⊢ (𝜑 → (𝐵𝑅𝐴 ↔ [𝐵]𝑅 = [𝐴]𝑅)) |
5 | eqcom 2195 | . . 3 ⊢ ([𝐵]𝑅 = [𝐴]𝑅 ↔ [𝐴]𝑅 = [𝐵]𝑅) | |
6 | 4, 5 | bitrdi 196 | . 2 ⊢ (𝜑 → (𝐵𝑅𝐴 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
7 | 2, 6 | bitrd 188 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 Er wer 6586 [cec 6587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-er 6589 df-ec 6591 |
This theorem is referenced by: qliftel 6671 |
Copyright terms: Public domain | W3C validator |