Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > erth2 | GIF version |
Description: Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) |
Ref | Expression |
---|---|
erth2.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
erth2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
Ref | Expression |
---|---|
erth2 | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erth2.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
2 | 1 | ersymb 6527 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
3 | erth2.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
4 | 1, 3 | erth 6557 | . . 3 ⊢ (𝜑 → (𝐵𝑅𝐴 ↔ [𝐵]𝑅 = [𝐴]𝑅)) |
5 | eqcom 2172 | . . 3 ⊢ ([𝐵]𝑅 = [𝐴]𝑅 ↔ [𝐴]𝑅 = [𝐵]𝑅) | |
6 | 4, 5 | bitrdi 195 | . 2 ⊢ (𝜑 → (𝐵𝑅𝐴 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
7 | 2, 6 | bitrd 187 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 Er wer 6510 [cec 6511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-er 6513 df-ec 6515 |
This theorem is referenced by: qliftel 6593 |
Copyright terms: Public domain | W3C validator |