ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erthi Unicode version

Theorem erthi 6475
Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
erthi.1  |-  ( ph  ->  R  Er  X )
erthi.2  |-  ( ph  ->  A R B )
Assertion
Ref Expression
erthi  |-  ( ph  ->  [ A ] R  =  [ B ] R
)

Proof of Theorem erthi
StepHypRef Expression
1 erthi.2 . 2  |-  ( ph  ->  A R B )
2 erthi.1 . . 3  |-  ( ph  ->  R  Er  X )
32, 1ercl 6440 . . 3  |-  ( ph  ->  A  e.  X )
42, 3erth 6473 . 2  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )
51, 4mpbid 146 1  |-  ( ph  ->  [ A ] R  =  [ B ] R
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331   class class class wbr 3929    Er wer 6426   [cec 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-er 6429  df-ec 6431
This theorem is referenced by:  qsel  6506  th3qlem1  6531  mulcanenqec  7206  mulcanenq0ec  7265  addnq0mo  7267  mulnq0mo  7268  addsrmo  7563  mulsrmo  7564  blpnfctr  12622
  Copyright terms: Public domain W3C validator