ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erthi Unicode version

Theorem erthi 6658
Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
erthi.1  |-  ( ph  ->  R  Er  X )
erthi.2  |-  ( ph  ->  A R B )
Assertion
Ref Expression
erthi  |-  ( ph  ->  [ A ] R  =  [ B ] R
)

Proof of Theorem erthi
StepHypRef Expression
1 erthi.2 . 2  |-  ( ph  ->  A R B )
2 erthi.1 . . 3  |-  ( ph  ->  R  Er  X )
32, 1ercl 6621 . . 3  |-  ( ph  ->  A  e.  X )
42, 3erth 6656 . 2  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )
51, 4mpbid 147 1  |-  ( ph  ->  [ A ] R  =  [ B ] R
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372   class class class wbr 4043    Er wer 6607   [cec 6608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-er 6610  df-ec 6612
This theorem is referenced by:  qsel  6689  th3qlem1  6714  mulcanenqec  7481  mulcanenq0ec  7540  addnq0mo  7542  mulnq0mo  7543  addsrmo  7838  mulsrmo  7839  qusgrp2  13367  blpnfctr  14829
  Copyright terms: Public domain W3C validator