| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erthi | Unicode version | ||
| Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| erthi.1 |
|
| erthi.2 |
|
| Ref | Expression |
|---|---|
| erthi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erthi.2 |
. 2
| |
| 2 | erthi.1 |
. . 3
| |
| 3 | 2, 1 | ercl 6621 |
. . 3
|
| 4 | 2, 3 | erth 6656 |
. 2
|
| 5 | 1, 4 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-er 6610 df-ec 6612 |
| This theorem is referenced by: qsel 6689 th3qlem1 6714 mulcanenqec 7481 mulcanenq0ec 7540 addnq0mo 7542 mulnq0mo 7543 addsrmo 7838 mulsrmo 7839 qusgrp2 13367 blpnfctr 14829 |
| Copyright terms: Public domain | W3C validator |