ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftel Unicode version

Theorem qliftel 6562
Description: Elementhood in the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
qlift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
qlift.3  |-  ( ph  ->  R  Er  X )
qlift.4  |-  ( ph  ->  X  e.  _V )
Assertion
Ref Expression
qliftel  |-  ( ph  ->  ( [ C ] R F D  <->  E. x  e.  X  ( C R x  /\  D  =  A ) ) )
Distinct variable groups:    x, C    x, D    ph, x    x, R    x, X    x, Y
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem qliftel
StepHypRef Expression
1 qlift.1 . . 3  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
2 qlift.2 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
3 qlift.3 . . . 4  |-  ( ph  ->  R  Er  X )
4 qlift.4 . . . 4  |-  ( ph  ->  X  e.  _V )
51, 2, 3, 4qliftlem 6560 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R ) )
61, 5, 2fliftel 5745 . 2  |-  ( ph  ->  ( [ C ] R F D  <->  E. x  e.  X  ( [ C ] R  =  [
x ] R  /\  D  =  A )
) )
73adantr 274 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  R  Er  X )
8 simpr 109 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
97, 8erth2 6527 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ( C R x  <->  [ C ] R  =  [
x ] R ) )
109anbi1d 461 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( C R x  /\  D  =  A )  <->  ( [ C ] R  =  [
x ] R  /\  D  =  A )
) )
1110rexbidva 2454 . 2  |-  ( ph  ->  ( E. x  e.  X  ( C R x  /\  D  =  A )  <->  E. x  e.  X  ( [ C ] R  =  [
x ] R  /\  D  =  A )
) )
126, 11bitr4d 190 1  |-  ( ph  ->  ( [ C ] R F D  <->  E. x  e.  X  ( C R x  /\  D  =  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   E.wrex 2436   _Vcvv 2712   <.cop 3564   class class class wbr 3967    |-> cmpt 4027   ran crn 4589    Er wer 6479   [cec 6480   /.cqs 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4028  df-mpt 4029  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-er 6482  df-ec 6484  df-qs 6488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator