Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qliftel | Unicode version |
Description: Elementhood in the relation . (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
qlift.1 | |
qlift.2 | |
qlift.3 | |
qlift.4 |
Ref | Expression |
---|---|
qliftel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | . . 3 | |
2 | qlift.2 | . . . 4 | |
3 | qlift.3 | . . . 4 | |
4 | qlift.4 | . . . 4 | |
5 | 1, 2, 3, 4 | qliftlem 6591 | . . 3 |
6 | 1, 5, 2 | fliftel 5772 | . 2 |
7 | 3 | adantr 274 | . . . . 5 |
8 | simpr 109 | . . . . 5 | |
9 | 7, 8 | erth2 6558 | . . . 4 |
10 | 9 | anbi1d 462 | . . 3 |
11 | 10 | rexbidva 2467 | . 2 |
12 | 6, 11 | bitr4d 190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wrex 2449 cvv 2730 cop 3586 class class class wbr 3989 cmpt 4050 crn 4612 wer 6510 cec 6511 cqs 6512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-er 6513 df-ec 6515 df-qs 6519 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |