ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ertr3d GIF version

Theorem ertr3d 6668
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
ertr3d.5 (𝜑𝐵𝑅𝐴)
ertr3d.6 (𝜑𝐵𝑅𝐶)
Assertion
Ref Expression
ertr3d (𝜑𝐴𝑅𝐶)

Proof of Theorem ertr3d
StepHypRef Expression
1 ersymb.1 . 2 (𝜑𝑅 Er 𝑋)
2 ertr3d.5 . . 3 (𝜑𝐵𝑅𝐴)
31, 2ersym 6662 . 2 (𝜑𝐴𝑅𝐵)
4 ertr3d.6 . 2 (𝜑𝐵𝑅𝐶)
51, 3, 4ertrd 6666 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   class class class wbr 4062   Er wer 6647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-er 6650
This theorem is referenced by:  xmetresbl  15079
  Copyright terms: Public domain W3C validator