ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1osng Unicode version

Theorem f1osng 5563
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
f1osng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } )

Proof of Theorem f1osng
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3644 . . . 4  |-  ( a  =  A  ->  { a }  =  { A } )
2 f1oeq2 5511 . . . 4  |-  ( { a }  =  { A }  ->  ( {
<. a ,  b >. } : { a } -1-1-onto-> { b }  <->  { <. a ,  b >. } : { A } -1-1-onto-> { b } ) )
31, 2syl 14 . . 3  |-  ( a  =  A  ->  ( { <. a ,  b
>. } : { a } -1-1-onto-> { b }  <->  { <. a ,  b >. } : { A } -1-1-onto-> { b } ) )
4 opeq1 3819 . . . . 5  |-  ( a  =  A  ->  <. a ,  b >.  =  <. A ,  b >. )
54sneqd 3646 . . . 4  |-  ( a  =  A  ->  { <. a ,  b >. }  =  { <. A ,  b
>. } )
6 f1oeq1 5510 . . . 4  |-  ( {
<. a ,  b >. }  =  { <. A , 
b >. }  ->  ( { <. a ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { b } ) )
75, 6syl 14 . . 3  |-  ( a  =  A  ->  ( { <. a ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { b } ) )
83, 7bitrd 188 . 2  |-  ( a  =  A  ->  ( { <. a ,  b
>. } : { a } -1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { b } ) )
9 sneq 3644 . . . 4  |-  ( b  =  B  ->  { b }  =  { B } )
10 f1oeq3 5512 . . . 4  |-  ( { b }  =  { B }  ->  ( {
<. A ,  b >. } : { A } -1-1-onto-> {
b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { B } ) )
119, 10syl 14 . . 3  |-  ( b  =  B  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { B } ) )
12 opeq2 3820 . . . . 5  |-  ( b  =  B  ->  <. A , 
b >.  =  <. A ,  B >. )
1312sneqd 3646 . . . 4  |-  ( b  =  B  ->  { <. A ,  b >. }  =  { <. A ,  B >. } )
14 f1oeq1 5510 . . . 4  |-  ( {
<. A ,  b >. }  =  { <. A ,  B >. }  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { B }  <->  { <. A ,  B >. } : { A } -1-1-onto-> { B } ) )
1513, 14syl 14 . . 3  |-  ( b  =  B  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { B }  <->  { <. A ,  B >. } : { A } -1-1-onto-> { B } ) )
1611, 15bitrd 188 . 2  |-  ( b  =  B  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A ,  B >. } : { A } -1-1-onto-> { B } ) )
17 vex 2775 . . 3  |-  a  e. 
_V
18 vex 2775 . . 3  |-  b  e. 
_V
1917, 18f1osn 5562 . 2  |-  { <. a ,  b >. } : { a } -1-1-onto-> { b }
208, 16, 19vtocl2g 2837 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   {csn 3633   <.cop 3636   -1-1-onto->wf1o 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278
This theorem is referenced by:  f1sng  5564  f1oprg  5566  fsnunf  5784  dif1en  6976  1fv  10261  zfz1isolem1  10985  sumsnf  11720  prodsnf  11903  ennnfonelemhf1o  12784
  Copyright terms: Public domain W3C validator