| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1osng | Unicode version | ||
| Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.) |
| Ref | Expression |
|---|---|
| f1osng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3654 |
. . . 4
| |
| 2 | f1oeq2 5533 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | opeq1 3833 |
. . . . 5
| |
| 5 | 4 | sneqd 3656 |
. . . 4
|
| 6 | f1oeq1 5532 |
. . . 4
| |
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | 3, 7 | bitrd 188 |
. 2
|
| 9 | sneq 3654 |
. . . 4
| |
| 10 | f1oeq3 5534 |
. . . 4
| |
| 11 | 9, 10 | syl 14 |
. . 3
|
| 12 | opeq2 3834 |
. . . . 5
| |
| 13 | 12 | sneqd 3656 |
. . . 4
|
| 14 | f1oeq1 5532 |
. . . 4
| |
| 15 | 13, 14 | syl 14 |
. . 3
|
| 16 | 11, 15 | bitrd 188 |
. 2
|
| 17 | vex 2779 |
. . 3
| |
| 18 | vex 2779 |
. . 3
| |
| 19 | 17, 18 | f1osn 5585 |
. 2
|
| 20 | 8, 16, 19 | vtocl2g 2842 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 |
| This theorem is referenced by: f1sng 5587 f1oprg 5589 fsnunf 5807 dif1en 7002 1fv 10296 zfz1isolem1 11022 sumsnf 11835 prodsnf 12018 ennnfonelemhf1o 12899 |
| Copyright terms: Public domain | W3C validator |