ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1osng Unicode version

Theorem f1osng 5542
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
f1osng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } )

Proof of Theorem f1osng
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3630 . . . 4  |-  ( a  =  A  ->  { a }  =  { A } )
2 f1oeq2 5490 . . . 4  |-  ( { a }  =  { A }  ->  ( {
<. a ,  b >. } : { a } -1-1-onto-> { b }  <->  { <. a ,  b >. } : { A } -1-1-onto-> { b } ) )
31, 2syl 14 . . 3  |-  ( a  =  A  ->  ( { <. a ,  b
>. } : { a } -1-1-onto-> { b }  <->  { <. a ,  b >. } : { A } -1-1-onto-> { b } ) )
4 opeq1 3805 . . . . 5  |-  ( a  =  A  ->  <. a ,  b >.  =  <. A ,  b >. )
54sneqd 3632 . . . 4  |-  ( a  =  A  ->  { <. a ,  b >. }  =  { <. A ,  b
>. } )
6 f1oeq1 5489 . . . 4  |-  ( {
<. a ,  b >. }  =  { <. A , 
b >. }  ->  ( { <. a ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { b } ) )
75, 6syl 14 . . 3  |-  ( a  =  A  ->  ( { <. a ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { b } ) )
83, 7bitrd 188 . 2  |-  ( a  =  A  ->  ( { <. a ,  b
>. } : { a } -1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { b } ) )
9 sneq 3630 . . . 4  |-  ( b  =  B  ->  { b }  =  { B } )
10 f1oeq3 5491 . . . 4  |-  ( { b }  =  { B }  ->  ( {
<. A ,  b >. } : { A } -1-1-onto-> {
b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { B } ) )
119, 10syl 14 . . 3  |-  ( b  =  B  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { B } ) )
12 opeq2 3806 . . . . 5  |-  ( b  =  B  ->  <. A , 
b >.  =  <. A ,  B >. )
1312sneqd 3632 . . . 4  |-  ( b  =  B  ->  { <. A ,  b >. }  =  { <. A ,  B >. } )
14 f1oeq1 5489 . . . 4  |-  ( {
<. A ,  b >. }  =  { <. A ,  B >. }  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { B }  <->  { <. A ,  B >. } : { A } -1-1-onto-> { B } ) )
1513, 14syl 14 . . 3  |-  ( b  =  B  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { B }  <->  { <. A ,  B >. } : { A } -1-1-onto-> { B } ) )
1611, 15bitrd 188 . 2  |-  ( b  =  B  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A ,  B >. } : { A } -1-1-onto-> { B } ) )
17 vex 2763 . . 3  |-  a  e. 
_V
18 vex 2763 . . 3  |-  b  e. 
_V
1917, 18f1osn 5541 . 2  |-  { <. a ,  b >. } : { a } -1-1-onto-> { b }
208, 16, 19vtocl2g 2825 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {csn 3619   <.cop 3622   -1-1-onto->wf1o 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262
This theorem is referenced by:  f1sng  5543  f1oprg  5545  fsnunf  5759  dif1en  6937  1fv  10208  zfz1isolem1  10914  sumsnf  11555  prodsnf  11738  ennnfonelemhf1o  12573
  Copyright terms: Public domain W3C validator