| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1osng | Unicode version | ||
| Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.) |
| Ref | Expression |
|---|---|
| f1osng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3633 |
. . . 4
| |
| 2 | f1oeq2 5493 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | opeq1 3808 |
. . . . 5
| |
| 5 | 4 | sneqd 3635 |
. . . 4
|
| 6 | f1oeq1 5492 |
. . . 4
| |
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | 3, 7 | bitrd 188 |
. 2
|
| 9 | sneq 3633 |
. . . 4
| |
| 10 | f1oeq3 5494 |
. . . 4
| |
| 11 | 9, 10 | syl 14 |
. . 3
|
| 12 | opeq2 3809 |
. . . . 5
| |
| 13 | 12 | sneqd 3635 |
. . . 4
|
| 14 | f1oeq1 5492 |
. . . 4
| |
| 15 | 13, 14 | syl 14 |
. . 3
|
| 16 | 11, 15 | bitrd 188 |
. 2
|
| 17 | vex 2766 |
. . 3
| |
| 18 | vex 2766 |
. . 3
| |
| 19 | 17, 18 | f1osn 5544 |
. 2
|
| 20 | 8, 16, 19 | vtocl2g 2828 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 |
| This theorem is referenced by: f1sng 5546 f1oprg 5548 fsnunf 5762 dif1en 6940 1fv 10214 zfz1isolem1 10932 sumsnf 11574 prodsnf 11757 ennnfonelemhf1o 12630 |
| Copyright terms: Public domain | W3C validator |