ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1osng Unicode version

Theorem f1osng 5416
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
f1osng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } )

Proof of Theorem f1osng
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3543 . . . 4  |-  ( a  =  A  ->  { a }  =  { A } )
2 f1oeq2 5365 . . . 4  |-  ( { a }  =  { A }  ->  ( {
<. a ,  b >. } : { a } -1-1-onto-> { b }  <->  { <. a ,  b >. } : { A } -1-1-onto-> { b } ) )
31, 2syl 14 . . 3  |-  ( a  =  A  ->  ( { <. a ,  b
>. } : { a } -1-1-onto-> { b }  <->  { <. a ,  b >. } : { A } -1-1-onto-> { b } ) )
4 opeq1 3713 . . . . 5  |-  ( a  =  A  ->  <. a ,  b >.  =  <. A ,  b >. )
54sneqd 3545 . . . 4  |-  ( a  =  A  ->  { <. a ,  b >. }  =  { <. A ,  b
>. } )
6 f1oeq1 5364 . . . 4  |-  ( {
<. a ,  b >. }  =  { <. A , 
b >. }  ->  ( { <. a ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { b } ) )
75, 6syl 14 . . 3  |-  ( a  =  A  ->  ( { <. a ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { b } ) )
83, 7bitrd 187 . 2  |-  ( a  =  A  ->  ( { <. a ,  b
>. } : { a } -1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { b } ) )
9 sneq 3543 . . . 4  |-  ( b  =  B  ->  { b }  =  { B } )
10 f1oeq3 5366 . . . 4  |-  ( { b }  =  { B }  ->  ( {
<. A ,  b >. } : { A } -1-1-onto-> {
b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { B } ) )
119, 10syl 14 . . 3  |-  ( b  =  B  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { B } ) )
12 opeq2 3714 . . . . 5  |-  ( b  =  B  ->  <. A , 
b >.  =  <. A ,  B >. )
1312sneqd 3545 . . . 4  |-  ( b  =  B  ->  { <. A ,  b >. }  =  { <. A ,  B >. } )
14 f1oeq1 5364 . . . 4  |-  ( {
<. A ,  b >. }  =  { <. A ,  B >. }  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { B }  <->  { <. A ,  B >. } : { A } -1-1-onto-> { B } ) )
1513, 14syl 14 . . 3  |-  ( b  =  B  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { B }  <->  { <. A ,  B >. } : { A } -1-1-onto-> { B } ) )
1611, 15bitrd 187 . 2  |-  ( b  =  B  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A ,  B >. } : { A } -1-1-onto-> { B } ) )
17 vex 2692 . . 3  |-  a  e. 
_V
18 vex 2692 . . 3  |-  b  e. 
_V
1917, 18f1osn 5415 . 2  |-  { <. a ,  b >. } : { a } -1-1-onto-> { b }
208, 16, 19vtocl2g 2753 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   {csn 3532   <.cop 3535   -1-1-onto->wf1o 5130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138
This theorem is referenced by:  f1sng  5417  f1oprg  5419  fsnunf  5628  dif1en  6781  1fv  9947  zfz1isolem1  10615  sumsnf  11210  ennnfonelemhf1o  11962
  Copyright terms: Public domain W3C validator