ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1osng Unicode version

Theorem f1osng 5408
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
f1osng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } )

Proof of Theorem f1osng
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3538 . . . 4  |-  ( a  =  A  ->  { a }  =  { A } )
2 f1oeq2 5357 . . . 4  |-  ( { a }  =  { A }  ->  ( {
<. a ,  b >. } : { a } -1-1-onto-> { b }  <->  { <. a ,  b >. } : { A } -1-1-onto-> { b } ) )
31, 2syl 14 . . 3  |-  ( a  =  A  ->  ( { <. a ,  b
>. } : { a } -1-1-onto-> { b }  <->  { <. a ,  b >. } : { A } -1-1-onto-> { b } ) )
4 opeq1 3705 . . . . 5  |-  ( a  =  A  ->  <. a ,  b >.  =  <. A ,  b >. )
54sneqd 3540 . . . 4  |-  ( a  =  A  ->  { <. a ,  b >. }  =  { <. A ,  b
>. } )
6 f1oeq1 5356 . . . 4  |-  ( {
<. a ,  b >. }  =  { <. A , 
b >. }  ->  ( { <. a ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { b } ) )
75, 6syl 14 . . 3  |-  ( a  =  A  ->  ( { <. a ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { b } ) )
83, 7bitrd 187 . 2  |-  ( a  =  A  ->  ( { <. a ,  b
>. } : { a } -1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { b } ) )
9 sneq 3538 . . . 4  |-  ( b  =  B  ->  { b }  =  { B } )
10 f1oeq3 5358 . . . 4  |-  ( { b }  =  { B }  ->  ( {
<. A ,  b >. } : { A } -1-1-onto-> {
b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { B } ) )
119, 10syl 14 . . 3  |-  ( b  =  B  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { B } ) )
12 opeq2 3706 . . . . 5  |-  ( b  =  B  ->  <. A , 
b >.  =  <. A ,  B >. )
1312sneqd 3540 . . . 4  |-  ( b  =  B  ->  { <. A ,  b >. }  =  { <. A ,  B >. } )
14 f1oeq1 5356 . . . 4  |-  ( {
<. A ,  b >. }  =  { <. A ,  B >. }  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { B }  <->  { <. A ,  B >. } : { A } -1-1-onto-> { B } ) )
1513, 14syl 14 . . 3  |-  ( b  =  B  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { B }  <->  { <. A ,  B >. } : { A } -1-1-onto-> { B } ) )
1611, 15bitrd 187 . 2  |-  ( b  =  B  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A ,  B >. } : { A } -1-1-onto-> { B } ) )
17 vex 2689 . . 3  |-  a  e. 
_V
18 vex 2689 . . 3  |-  b  e. 
_V
1917, 18f1osn 5407 . 2  |-  { <. a ,  b >. } : { a } -1-1-onto-> { b }
208, 16, 19vtocl2g 2750 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   {csn 3527   <.cop 3530   -1-1-onto->wf1o 5122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130
This theorem is referenced by:  f1sng  5409  f1oprg  5411  fsnunf  5620  dif1en  6773  1fv  9923  zfz1isolem1  10590  sumsnf  11185  ennnfonelemhf1o  11933
  Copyright terms: Public domain W3C validator