ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumf1o Unicode version

Theorem fsumf1o 11701
Description: Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
fsumf1o.1  |-  ( k  =  G  ->  B  =  D )
fsumf1o.2  |-  ( ph  ->  C  e.  Fin )
fsumf1o.3  |-  ( ph  ->  F : C -1-1-onto-> A )
fsumf1o.4  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  =  G )
fsumf1o.5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fsumf1o  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ n  e.  C  D )
Distinct variable groups:    k, n, A    B, n    C, n    D, k    n, F    k, G    ph, k, n
Allowed substitution hints:    B( k)    C( k)    D( n)    F( k)    G( n)

Proof of Theorem fsumf1o
Dummy variables  f  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sum0 11699 . . . 4  |-  sum_ k  e.  (/)  B  =  0
2 fsumf1o.3 . . . . . . . 8  |-  ( ph  ->  F : C -1-1-onto-> A )
3 f1oeq2 5511 . . . . . . . 8  |-  ( C  =  (/)  ->  ( F : C -1-1-onto-> A  <->  F : (/) -1-1-onto-> A ) )
42, 3syl5ibcom 155 . . . . . . 7  |-  ( ph  ->  ( C  =  (/)  ->  F : (/) -1-1-onto-> A ) )
54imp 124 . . . . . 6  |-  ( (
ph  /\  C  =  (/) )  ->  F : (/) -1-1-onto-> A )
6 f1ofo 5529 . . . . . 6  |-  ( F : (/)
-1-1-onto-> A  ->  F : (/) -onto-> A )
7 fo00 5558 . . . . . . 7  |-  ( F : (/) -onto-> A  <->  ( F  =  (/)  /\  A  =  (/) ) )
87simprbi 275 . . . . . 6  |-  ( F : (/) -onto-> A  ->  A  =  (/) )
95, 6, 83syl 17 . . . . 5  |-  ( (
ph  /\  C  =  (/) )  ->  A  =  (/) )
109sumeq1d 11677 . . . 4  |-  ( (
ph  /\  C  =  (/) )  ->  sum_ k  e.  A  B  =  sum_ k  e.  (/)  B )
11 simpr 110 . . . . . 6  |-  ( (
ph  /\  C  =  (/) )  ->  C  =  (/) )
1211sumeq1d 11677 . . . . 5  |-  ( (
ph  /\  C  =  (/) )  ->  sum_ n  e.  C  D  =  sum_ n  e.  (/)  D )
13 sum0 11699 . . . . 5  |-  sum_ n  e.  (/)  D  =  0
1412, 13eqtrdi 2254 . . . 4  |-  ( (
ph  /\  C  =  (/) )  ->  sum_ n  e.  C  D  =  0 )
151, 10, 143eqtr4a 2264 . . 3  |-  ( (
ph  /\  C  =  (/) )  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D )
1615ex 115 . 2  |-  ( ph  ->  ( C  =  (/)  -> 
sum_ k  e.  A  B  =  sum_ n  e.  C  D ) )
17 2fveq3 5581 . . . . . . . 8  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  ( F `  m )
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 ( f `  n ) ) ) )
18 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
( `  C )  e.  NN )
19 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
f : ( 1 ... ( `  C
) ) -1-1-onto-> C )
20 f1of 5522 . . . . . . . . . . . 12  |-  ( F : C -1-1-onto-> A  ->  F : C
--> A )
212, 20syl 14 . . . . . . . . . . 11  |-  ( ph  ->  F : C --> A )
2221ffvelcdmda 5715 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  C )  ->  ( F `  m )  e.  A )
23 fsumf1o.5 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2423fmpttd 5735 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
2524ffvelcdmda 5715 . . . . . . . . . 10  |-  ( (
ph  /\  ( F `  m )  e.  A
)  ->  ( (
k  e.  A  |->  B ) `  ( F `
 m ) )  e.  CC )
2622, 25syldan 282 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  C )  ->  (
( k  e.  A  |->  B ) `  ( F `  m )
)  e.  CC )
2726adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  m  e.  C )  ->  (
( k  e.  A  |->  B ) `  ( F `  m )
)  e.  CC )
282adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  F : C -1-1-onto-> A )
29 f1oco 5545 . . . . . . . . . . . 12  |-  ( ( F : C -1-1-onto-> A  /\  f : ( 1 ... ( `  C )
)
-1-1-onto-> C )  ->  ( F  o.  f ) : ( 1 ... ( `  C )
)
-1-1-onto-> A )
3028, 19, 29syl2anc 411 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
( F  o.  f
) : ( 1 ... ( `  C
) ) -1-1-onto-> A )
31 f1of 5522 . . . . . . . . . . 11  |-  ( ( F  o.  f ) : ( 1 ... ( `  C )
)
-1-1-onto-> A  ->  ( F  o.  f ) : ( 1 ... ( `  C
) ) --> A )
3230, 31syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
( F  o.  f
) : ( 1 ... ( `  C
) ) --> A )
33 fvco3 5650 . . . . . . . . . 10  |-  ( ( ( F  o.  f
) : ( 1 ... ( `  C
) ) --> A  /\  n  e.  ( 1 ... ( `  C
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
( F  o.  f
) `  n )
) )
3432, 33sylan 283 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( `  C ) ) )  ->  ( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `
 n )  =  ( ( k  e.  A  |->  B ) `  ( ( F  o.  f ) `  n
) ) )
35 f1of 5522 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( `  C )
)
-1-1-onto-> C  ->  f : ( 1 ... ( `  C
) ) --> C )
3635ad2antll 491 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
f : ( 1 ... ( `  C
) ) --> C )
37 fvco3 5650 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( `  C
) ) --> C  /\  n  e.  ( 1 ... ( `  C
) ) )  -> 
( ( F  o.  f ) `  n
)  =  ( F `
 ( f `  n ) ) )
3836, 37sylan 283 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( `  C ) ) )  ->  ( ( F  o.  f ) `  n )  =  ( F `  ( f `
 n ) ) )
3938fveq2d 5580 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( `  C ) ) )  ->  ( ( k  e.  A  |->  B ) `
 ( ( F  o.  f ) `  n ) )  =  ( ( k  e.  A  |->  B ) `  ( F `  ( f `
 n ) ) ) )
4034, 39eqtrd 2238 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( `  C ) ) )  ->  ( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `
 n )  =  ( ( k  e.  A  |->  B ) `  ( F `  ( f `
 n ) ) ) )
4117, 18, 19, 27, 40fsum3 11698 . . . . . . 7  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  sum_ m  e.  C  ( ( k  e.  A  |->  B ) `  ( F `  m )
)  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  C ) ,  ( ( ( k  e.  A  |->  B )  o.  ( F  o.  f
) ) `  n
) ,  0 ) ) ) `  ( `  C ) ) )
42 eqid 2205 . . . . . . . . . . . . 13  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
43 fsumf1o.1 . . . . . . . . . . . . 13  |-  ( k  =  G  ->  B  =  D )
44 fsumf1o.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  =  G )
4521ffvelcdmda 5715 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  e.  A )
4644, 45eqeltrrd 2283 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  C )  ->  G  e.  A )
4743eleq1d 2274 . . . . . . . . . . . . . 14  |-  ( k  =  G  ->  ( B  e.  CC  <->  D  e.  CC ) )
4823ralrimiva 2579 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
4948adantr 276 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  C )  ->  A. k  e.  A  B  e.  CC )
5047, 49, 46rspcdva 2882 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  C )  ->  D  e.  CC )
5142, 43, 46, 50fvmptd3 5673 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( k  e.  A  |->  B ) `  G
)  =  D )
5244fveq2d 5580 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( k  e.  A  |->  B ) `  ( F `  n )
)  =  ( ( k  e.  A  |->  B ) `  G ) )
53 simpr 110 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  C )  ->  n  e.  C )
54 eqid 2205 . . . . . . . . . . . . . 14  |-  ( n  e.  C  |->  D )  =  ( n  e.  C  |->  D )
5554fvmpt2 5663 . . . . . . . . . . . . 13  |-  ( ( n  e.  C  /\  D  e.  CC )  ->  ( ( n  e.  C  |->  D ) `  n )  =  D )
5653, 50, 55syl2anc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( n  e.  C  |->  D ) `  n
)  =  D )
5751, 52, 563eqtr4rd 2249 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  C )  ->  (
( n  e.  C  |->  D ) `  n
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 n ) ) )
5857ralrimiva 2579 . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  C  ( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
) )
59 nffvmpt1 5587 . . . . . . . . . . . 12  |-  F/_ n
( ( n  e.  C  |->  D ) `  m )
6059nfeq1 2358 . . . . . . . . . . 11  |-  F/ n
( ( n  e.  C  |->  D ) `  m )  =  ( ( k  e.  A  |->  B ) `  ( F `  m )
)
61 fveq2 5576 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( n  e.  C  |->  D ) `  n
)  =  ( ( n  e.  C  |->  D ) `  m ) )
62 2fveq3 5581 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( k  e.  A  |->  B ) `  ( F `  n )
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 m ) ) )
6361, 62eqeq12d 2220 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
)  <->  ( ( n  e.  C  |->  D ) `
 m )  =  ( ( k  e.  A  |->  B ) `  ( F `  m ) ) ) )
6460, 63rspc 2871 . . . . . . . . . 10  |-  ( m  e.  C  ->  ( A. n  e.  C  ( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
)  ->  ( (
n  e.  C  |->  D ) `  m )  =  ( ( k  e.  A  |->  B ) `
 ( F `  m ) ) ) )
6558, 64mpan9 281 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  C )  ->  (
( n  e.  C  |->  D ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 m ) ) )
6665adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  m  e.  C )  ->  (
( n  e.  C  |->  D ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 m ) ) )
6766sumeq2dv 11679 . . . . . . 7  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  sum_ m  e.  C  ( ( n  e.  C  |->  D ) `  m
)  =  sum_ m  e.  C  ( (
k  e.  A  |->  B ) `  ( F `
 m ) ) )
68 fveq2 5576 . . . . . . . 8  |-  ( m  =  ( ( F  o.  f ) `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( ( F  o.  f ) `
 n ) ) )
6924adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
( k  e.  A  |->  B ) : A --> CC )
7069ffvelcdmda 5715 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  m  e.  A )  ->  (
( k  e.  A  |->  B ) `  m
)  e.  CC )
7168, 18, 30, 70, 34fsum3 11698 . . . . . . 7  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  C ) ,  ( ( ( k  e.  A  |->  B )  o.  ( F  o.  f
) ) `  n
) ,  0 ) ) ) `  ( `  C ) ) )
7241, 67, 713eqtr4rd 2249 . . . . . 6  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  =  sum_ m  e.  C  ( (
n  e.  C  |->  D ) `  m ) )
73 sumfct 11685 . . . . . . . 8  |-  ( A. k  e.  A  B  e.  CC  ->  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `
 m )  = 
sum_ k  e.  A  B )
7448, 73syl 14 . . . . . . 7  |-  ( ph  -> 
sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  =  sum_ k  e.  A  B
)
7574adantr 276 . . . . . 6  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  =  sum_ k  e.  A  B )
7650ralrimiva 2579 . . . . . . . 8  |-  ( ph  ->  A. n  e.  C  D  e.  CC )
77 sumfct 11685 . . . . . . . 8  |-  ( A. n  e.  C  D  e.  CC  ->  sum_ m  e.  C  ( ( n  e.  C  |->  D ) `
 m )  = 
sum_ n  e.  C  D )
7876, 77syl 14 . . . . . . 7  |-  ( ph  -> 
sum_ m  e.  C  ( ( n  e.  C  |->  D ) `  m )  =  sum_ n  e.  C  D )
7978adantr 276 . . . . . 6  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  sum_ m  e.  C  ( ( n  e.  C  |->  D ) `  m
)  =  sum_ n  e.  C  D )
8072, 75, 793eqtr3d 2246 . . . . 5  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D )
8180expr 375 . . . 4  |-  ( (
ph  /\  ( `  C
)  e.  NN )  ->  ( f : ( 1 ... ( `  C ) ) -1-1-onto-> C  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D ) )
8281exlimdv 1842 . . 3  |-  ( (
ph  /\  ( `  C
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( `  C
) ) -1-1-onto-> C  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D ) )
8382expimpd 363 . 2  |-  ( ph  ->  ( ( ( `  C
)  e.  NN  /\  E. f  f : ( 1 ... ( `  C
) ) -1-1-onto-> C )  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D
) )
84 fsumf1o.2 . . 3  |-  ( ph  ->  C  e.  Fin )
85 fz1f1o 11686 . . 3  |-  ( C  e.  Fin  ->  ( C  =  (/)  \/  (
( `  C )  e.  NN  /\  E. f 
f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) ) )
8684, 85syl 14 . 2  |-  ( ph  ->  ( C  =  (/)  \/  ( ( `  C
)  e.  NN  /\  E. f  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) ) )
8716, 83, 86mpjaod 720 1  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ n  e.  C  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   (/)c0 3460   ifcif 3571   class class class wbr 4044    |-> cmpt 4105    o. ccom 4679   -->wf 5267   -onto->wfo 5269   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5944   Fincfn 6827   CCcc 7923   0cc0 7925   1c1 7926    + caddc 7928    <_ cle 8108   NNcn 9036   ...cfz 10130    seqcseq 10592  ♯chash 10920   sum_csu 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665
This theorem is referenced by:  fisumss  11703  fsum2dlemstep  11745  fsumcnv  11748  fsumrev  11754  fsumshft  11755  phisum  12563  fsumdvdsmul  15463  sgmppw  15464
  Copyright terms: Public domain W3C validator