ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumf1o Unicode version

Theorem fsumf1o 11353
Description: Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
fsumf1o.1  |-  ( k  =  G  ->  B  =  D )
fsumf1o.2  |-  ( ph  ->  C  e.  Fin )
fsumf1o.3  |-  ( ph  ->  F : C -1-1-onto-> A )
fsumf1o.4  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  =  G )
fsumf1o.5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fsumf1o  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ n  e.  C  D )
Distinct variable groups:    k, n, A    B, n    C, n    D, k    n, F    k, G    ph, k, n
Allowed substitution hints:    B( k)    C( k)    D( n)    F( k)    G( n)

Proof of Theorem fsumf1o
Dummy variables  f  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sum0 11351 . . . 4  |-  sum_ k  e.  (/)  B  =  0
2 fsumf1o.3 . . . . . . . 8  |-  ( ph  ->  F : C -1-1-onto-> A )
3 f1oeq2 5432 . . . . . . . 8  |-  ( C  =  (/)  ->  ( F : C -1-1-onto-> A  <->  F : (/) -1-1-onto-> A ) )
42, 3syl5ibcom 154 . . . . . . 7  |-  ( ph  ->  ( C  =  (/)  ->  F : (/) -1-1-onto-> A ) )
54imp 123 . . . . . 6  |-  ( (
ph  /\  C  =  (/) )  ->  F : (/) -1-1-onto-> A )
6 f1ofo 5449 . . . . . 6  |-  ( F : (/)
-1-1-onto-> A  ->  F : (/) -onto-> A )
7 fo00 5478 . . . . . . 7  |-  ( F : (/) -onto-> A  <->  ( F  =  (/)  /\  A  =  (/) ) )
87simprbi 273 . . . . . 6  |-  ( F : (/) -onto-> A  ->  A  =  (/) )
95, 6, 83syl 17 . . . . 5  |-  ( (
ph  /\  C  =  (/) )  ->  A  =  (/) )
109sumeq1d 11329 . . . 4  |-  ( (
ph  /\  C  =  (/) )  ->  sum_ k  e.  A  B  =  sum_ k  e.  (/)  B )
11 simpr 109 . . . . . 6  |-  ( (
ph  /\  C  =  (/) )  ->  C  =  (/) )
1211sumeq1d 11329 . . . . 5  |-  ( (
ph  /\  C  =  (/) )  ->  sum_ n  e.  C  D  =  sum_ n  e.  (/)  D )
13 sum0 11351 . . . . 5  |-  sum_ n  e.  (/)  D  =  0
1412, 13eqtrdi 2219 . . . 4  |-  ( (
ph  /\  C  =  (/) )  ->  sum_ n  e.  C  D  =  0 )
151, 10, 143eqtr4a 2229 . . 3  |-  ( (
ph  /\  C  =  (/) )  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D )
1615ex 114 . 2  |-  ( ph  ->  ( C  =  (/)  -> 
sum_ k  e.  A  B  =  sum_ n  e.  C  D ) )
17 2fveq3 5501 . . . . . . . 8  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  ( F `  m )
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 ( f `  n ) ) ) )
18 simprl 526 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
( `  C )  e.  NN )
19 simprr 527 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
f : ( 1 ... ( `  C
) ) -1-1-onto-> C )
20 f1of 5442 . . . . . . . . . . . 12  |-  ( F : C -1-1-onto-> A  ->  F : C
--> A )
212, 20syl 14 . . . . . . . . . . 11  |-  ( ph  ->  F : C --> A )
2221ffvelrnda 5631 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  C )  ->  ( F `  m )  e.  A )
23 fsumf1o.5 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2423fmpttd 5651 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
2524ffvelrnda 5631 . . . . . . . . . 10  |-  ( (
ph  /\  ( F `  m )  e.  A
)  ->  ( (
k  e.  A  |->  B ) `  ( F `
 m ) )  e.  CC )
2622, 25syldan 280 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  C )  ->  (
( k  e.  A  |->  B ) `  ( F `  m )
)  e.  CC )
2726adantlr 474 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  m  e.  C )  ->  (
( k  e.  A  |->  B ) `  ( F `  m )
)  e.  CC )
282adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  F : C -1-1-onto-> A )
29 f1oco 5465 . . . . . . . . . . . 12  |-  ( ( F : C -1-1-onto-> A  /\  f : ( 1 ... ( `  C )
)
-1-1-onto-> C )  ->  ( F  o.  f ) : ( 1 ... ( `  C )
)
-1-1-onto-> A )
3028, 19, 29syl2anc 409 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
( F  o.  f
) : ( 1 ... ( `  C
) ) -1-1-onto-> A )
31 f1of 5442 . . . . . . . . . . 11  |-  ( ( F  o.  f ) : ( 1 ... ( `  C )
)
-1-1-onto-> A  ->  ( F  o.  f ) : ( 1 ... ( `  C
) ) --> A )
3230, 31syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
( F  o.  f
) : ( 1 ... ( `  C
) ) --> A )
33 fvco3 5567 . . . . . . . . . 10  |-  ( ( ( F  o.  f
) : ( 1 ... ( `  C
) ) --> A  /\  n  e.  ( 1 ... ( `  C
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
( F  o.  f
) `  n )
) )
3432, 33sylan 281 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( `  C ) ) )  ->  ( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `
 n )  =  ( ( k  e.  A  |->  B ) `  ( ( F  o.  f ) `  n
) ) )
35 f1of 5442 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( `  C )
)
-1-1-onto-> C  ->  f : ( 1 ... ( `  C
) ) --> C )
3635ad2antll 488 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
f : ( 1 ... ( `  C
) ) --> C )
37 fvco3 5567 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( `  C
) ) --> C  /\  n  e.  ( 1 ... ( `  C
) ) )  -> 
( ( F  o.  f ) `  n
)  =  ( F `
 ( f `  n ) ) )
3836, 37sylan 281 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( `  C ) ) )  ->  ( ( F  o.  f ) `  n )  =  ( F `  ( f `
 n ) ) )
3938fveq2d 5500 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( `  C ) ) )  ->  ( ( k  e.  A  |->  B ) `
 ( ( F  o.  f ) `  n ) )  =  ( ( k  e.  A  |->  B ) `  ( F `  ( f `
 n ) ) ) )
4034, 39eqtrd 2203 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( `  C ) ) )  ->  ( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `
 n )  =  ( ( k  e.  A  |->  B ) `  ( F `  ( f `
 n ) ) ) )
4117, 18, 19, 27, 40fsum3 11350 . . . . . . 7  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  sum_ m  e.  C  ( ( k  e.  A  |->  B ) `  ( F `  m )
)  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  C ) ,  ( ( ( k  e.  A  |->  B )  o.  ( F  o.  f
) ) `  n
) ,  0 ) ) ) `  ( `  C ) ) )
42 eqid 2170 . . . . . . . . . . . . 13  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
43 fsumf1o.1 . . . . . . . . . . . . 13  |-  ( k  =  G  ->  B  =  D )
44 fsumf1o.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  =  G )
4521ffvelrnda 5631 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  e.  A )
4644, 45eqeltrrd 2248 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  C )  ->  G  e.  A )
4743eleq1d 2239 . . . . . . . . . . . . . 14  |-  ( k  =  G  ->  ( B  e.  CC  <->  D  e.  CC ) )
4823ralrimiva 2543 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
4948adantr 274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  C )  ->  A. k  e.  A  B  e.  CC )
5047, 49, 46rspcdva 2839 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  C )  ->  D  e.  CC )
5142, 43, 46, 50fvmptd3 5589 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( k  e.  A  |->  B ) `  G
)  =  D )
5244fveq2d 5500 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( k  e.  A  |->  B ) `  ( F `  n )
)  =  ( ( k  e.  A  |->  B ) `  G ) )
53 simpr 109 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  C )  ->  n  e.  C )
54 eqid 2170 . . . . . . . . . . . . . 14  |-  ( n  e.  C  |->  D )  =  ( n  e.  C  |->  D )
5554fvmpt2 5579 . . . . . . . . . . . . 13  |-  ( ( n  e.  C  /\  D  e.  CC )  ->  ( ( n  e.  C  |->  D ) `  n )  =  D )
5653, 50, 55syl2anc 409 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( n  e.  C  |->  D ) `  n
)  =  D )
5751, 52, 563eqtr4rd 2214 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  C )  ->  (
( n  e.  C  |->  D ) `  n
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 n ) ) )
5857ralrimiva 2543 . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  C  ( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
) )
59 nffvmpt1 5507 . . . . . . . . . . . 12  |-  F/_ n
( ( n  e.  C  |->  D ) `  m )
6059nfeq1 2322 . . . . . . . . . . 11  |-  F/ n
( ( n  e.  C  |->  D ) `  m )  =  ( ( k  e.  A  |->  B ) `  ( F `  m )
)
61 fveq2 5496 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( n  e.  C  |->  D ) `  n
)  =  ( ( n  e.  C  |->  D ) `  m ) )
62 2fveq3 5501 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( k  e.  A  |->  B ) `  ( F `  n )
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 m ) ) )
6361, 62eqeq12d 2185 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
)  <->  ( ( n  e.  C  |->  D ) `
 m )  =  ( ( k  e.  A  |->  B ) `  ( F `  m ) ) ) )
6460, 63rspc 2828 . . . . . . . . . 10  |-  ( m  e.  C  ->  ( A. n  e.  C  ( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
)  ->  ( (
n  e.  C  |->  D ) `  m )  =  ( ( k  e.  A  |->  B ) `
 ( F `  m ) ) ) )
6558, 64mpan9 279 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  C )  ->  (
( n  e.  C  |->  D ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 m ) ) )
6665adantlr 474 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  m  e.  C )  ->  (
( n  e.  C  |->  D ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 m ) ) )
6766sumeq2dv 11331 . . . . . . 7  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  sum_ m  e.  C  ( ( n  e.  C  |->  D ) `  m
)  =  sum_ m  e.  C  ( (
k  e.  A  |->  B ) `  ( F `
 m ) ) )
68 fveq2 5496 . . . . . . . 8  |-  ( m  =  ( ( F  o.  f ) `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( ( F  o.  f ) `
 n ) ) )
6924adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
( k  e.  A  |->  B ) : A --> CC )
7069ffvelrnda 5631 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  m  e.  A )  ->  (
( k  e.  A  |->  B ) `  m
)  e.  CC )
7168, 18, 30, 70, 34fsum3 11350 . . . . . . 7  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  C ) ,  ( ( ( k  e.  A  |->  B )  o.  ( F  o.  f
) ) `  n
) ,  0 ) ) ) `  ( `  C ) ) )
7241, 67, 713eqtr4rd 2214 . . . . . 6  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  =  sum_ m  e.  C  ( (
n  e.  C  |->  D ) `  m ) )
73 sumfct 11337 . . . . . . . 8  |-  ( A. k  e.  A  B  e.  CC  ->  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `
 m )  = 
sum_ k  e.  A  B )
7448, 73syl 14 . . . . . . 7  |-  ( ph  -> 
sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  =  sum_ k  e.  A  B
)
7574adantr 274 . . . . . 6  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  =  sum_ k  e.  A  B )
7650ralrimiva 2543 . . . . . . . 8  |-  ( ph  ->  A. n  e.  C  D  e.  CC )
77 sumfct 11337 . . . . . . . 8  |-  ( A. n  e.  C  D  e.  CC  ->  sum_ m  e.  C  ( ( n  e.  C  |->  D ) `
 m )  = 
sum_ n  e.  C  D )
7876, 77syl 14 . . . . . . 7  |-  ( ph  -> 
sum_ m  e.  C  ( ( n  e.  C  |->  D ) `  m )  =  sum_ n  e.  C  D )
7978adantr 274 . . . . . 6  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  sum_ m  e.  C  ( ( n  e.  C  |->  D ) `  m
)  =  sum_ n  e.  C  D )
8072, 75, 793eqtr3d 2211 . . . . 5  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D )
8180expr 373 . . . 4  |-  ( (
ph  /\  ( `  C
)  e.  NN )  ->  ( f : ( 1 ... ( `  C ) ) -1-1-onto-> C  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D ) )
8281exlimdv 1812 . . 3  |-  ( (
ph  /\  ( `  C
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( `  C
) ) -1-1-onto-> C  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D ) )
8382expimpd 361 . 2  |-  ( ph  ->  ( ( ( `  C
)  e.  NN  /\  E. f  f : ( 1 ... ( `  C
) ) -1-1-onto-> C )  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D
) )
84 fsumf1o.2 . . 3  |-  ( ph  ->  C  e.  Fin )
85 fz1f1o 11338 . . 3  |-  ( C  e.  Fin  ->  ( C  =  (/)  \/  (
( `  C )  e.  NN  /\  E. f 
f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) ) )
8684, 85syl 14 . 2  |-  ( ph  ->  ( C  =  (/)  \/  ( ( `  C
)  e.  NN  /\  E. f  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) ) )
8716, 83, 86mpjaod 713 1  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ n  e.  C  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   (/)c0 3414   ifcif 3526   class class class wbr 3989    |-> cmpt 4050    o. ccom 4615   -->wf 5194   -onto->wfo 5196   -1-1-onto->wf1o 5197   ` cfv 5198  (class class class)co 5853   Fincfn 6718   CCcc 7772   0cc0 7774   1c1 7775    + caddc 7777    <_ cle 7955   NNcn 8878   ...cfz 9965    seqcseq 10401  ♯chash 10709   sum_csu 11316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317
This theorem is referenced by:  fisumss  11355  fsum2dlemstep  11397  fsumcnv  11400  fsumrev  11406  fsumshft  11407  phisum  12194
  Copyright terms: Public domain W3C validator