ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodf1o Unicode version

Theorem fprodf1o 11734
Description: Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017.)
Hypotheses
Ref Expression
fprodf1o.1  |-  ( k  =  G  ->  B  =  D )
fprodf1o.2  |-  ( ph  ->  C  e.  Fin )
fprodf1o.3  |-  ( ph  ->  F : C -1-1-onto-> A )
fprodf1o.4  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  =  G )
fprodf1o.5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fprodf1o  |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D )
Distinct variable groups:    A, k, n    B, n    C, n    D, k    n, F    k, G    ph, k, n
Allowed substitution hints:    B( k)    C( k)    D( n)    F( k)    G( n)

Proof of Theorem fprodf1o
Dummy variables  f  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prod0 11731 . . . 4  |-  prod_ k  e.  (/)  B  =  1
2 fprodf1o.3 . . . . . . . . 9  |-  ( ph  ->  F : C -1-1-onto-> A )
32adantr 276 . . . . . . . 8  |-  ( (
ph  /\  C  =  (/) )  ->  F : C
-1-1-onto-> A )
4 f1oeq2 5490 . . . . . . . . 9  |-  ( C  =  (/)  ->  ( F : C -1-1-onto-> A  <->  F : (/) -1-1-onto-> A ) )
54adantl 277 . . . . . . . 8  |-  ( (
ph  /\  C  =  (/) )  ->  ( F : C -1-1-onto-> A  <->  F : (/) -1-1-onto-> A ) )
63, 5mpbid 147 . . . . . . 7  |-  ( (
ph  /\  C  =  (/) )  ->  F : (/) -1-1-onto-> A )
7 f1ofo 5508 . . . . . . 7  |-  ( F : (/)
-1-1-onto-> A  ->  F : (/) -onto-> A )
86, 7syl 14 . . . . . 6  |-  ( (
ph  /\  C  =  (/) )  ->  F : (/)
-onto-> A )
9 fo00 5537 . . . . . . 7  |-  ( F : (/) -onto-> A  <->  ( F  =  (/)  /\  A  =  (/) ) )
109simprbi 275 . . . . . 6  |-  ( F : (/) -onto-> A  ->  A  =  (/) )
118, 10syl 14 . . . . 5  |-  ( (
ph  /\  C  =  (/) )  ->  A  =  (/) )
1211prodeq1d 11710 . . . 4  |-  ( (
ph  /\  C  =  (/) )  ->  prod_ k  e.  A  B  =  prod_ k  e.  (/)  B )
13 prodeq1 11699 . . . . . 6  |-  ( C  =  (/)  ->  prod_ n  e.  C  D  =  prod_ n  e.  (/)  D )
14 prod0 11731 . . . . . 6  |-  prod_ n  e.  (/)  D  =  1
1513, 14eqtrdi 2242 . . . . 5  |-  ( C  =  (/)  ->  prod_ n  e.  C  D  = 
1 )
1615adantl 277 . . . 4  |-  ( (
ph  /\  C  =  (/) )  ->  prod_ n  e.  C  D  =  1 )
171, 12, 163eqtr4a 2252 . . 3  |-  ( (
ph  /\  C  =  (/) )  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D )
1817ex 115 . 2  |-  ( ph  ->  ( C  =  (/)  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D ) )
19 2fveq3 5560 . . . . . . . 8  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  ( F `  m )
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 ( f `  n ) ) ) )
20 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
( `  C )  e.  NN )
21 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
f : ( 1 ... ( `  C
) ) -1-1-onto-> C )
22 f1of 5501 . . . . . . . . . . . 12  |-  ( F : C -1-1-onto-> A  ->  F : C
--> A )
232, 22syl 14 . . . . . . . . . . 11  |-  ( ph  ->  F : C --> A )
2423ffvelcdmda 5694 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  C )  ->  ( F `  m )  e.  A )
25 fprodf1o.5 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2625fmpttd 5714 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
2726ffvelcdmda 5694 . . . . . . . . . 10  |-  ( (
ph  /\  ( F `  m )  e.  A
)  ->  ( (
k  e.  A  |->  B ) `  ( F `
 m ) )  e.  CC )
2824, 27syldan 282 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  C )  ->  (
( k  e.  A  |->  B ) `  ( F `  m )
)  e.  CC )
2928adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  m  e.  C )  ->  (
( k  e.  A  |->  B ) `  ( F `  m )
)  e.  CC )
30 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C )  ->  f : ( 1 ... ( `  C
) ) -1-1-onto-> C )
31 f1oco 5524 . . . . . . . . . . . 12  |-  ( ( F : C -1-1-onto-> A  /\  f : ( 1 ... ( `  C )
)
-1-1-onto-> C )  ->  ( F  o.  f ) : ( 1 ... ( `  C )
)
-1-1-onto-> A )
322, 30, 31syl2an 289 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
( F  o.  f
) : ( 1 ... ( `  C
) ) -1-1-onto-> A )
33 f1of 5501 . . . . . . . . . . 11  |-  ( ( F  o.  f ) : ( 1 ... ( `  C )
)
-1-1-onto-> A  ->  ( F  o.  f ) : ( 1 ... ( `  C
) ) --> A )
3432, 33syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
( F  o.  f
) : ( 1 ... ( `  C
) ) --> A )
35 fvco3 5629 . . . . . . . . . 10  |-  ( ( ( F  o.  f
) : ( 1 ... ( `  C
) ) --> A  /\  n  e.  ( 1 ... ( `  C
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
( F  o.  f
) `  n )
) )
3634, 35sylan 283 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( `  C ) ) )  ->  ( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `
 n )  =  ( ( k  e.  A  |->  B ) `  ( ( F  o.  f ) `  n
) ) )
37 f1of 5501 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( `  C )
)
-1-1-onto-> C  ->  f : ( 1 ... ( `  C
) ) --> C )
3837adantl 277 . . . . . . . . . . . 12  |-  ( ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C )  ->  f : ( 1 ... ( `  C
) ) --> C )
3938adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
f : ( 1 ... ( `  C
) ) --> C )
40 fvco3 5629 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( `  C
) ) --> C  /\  n  e.  ( 1 ... ( `  C
) ) )  -> 
( ( F  o.  f ) `  n
)  =  ( F `
 ( f `  n ) ) )
4139, 40sylan 283 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( `  C ) ) )  ->  ( ( F  o.  f ) `  n )  =  ( F `  ( f `
 n ) ) )
4241fveq2d 5559 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( `  C ) ) )  ->  ( ( k  e.  A  |->  B ) `
 ( ( F  o.  f ) `  n ) )  =  ( ( k  e.  A  |->  B ) `  ( F `  ( f `
 n ) ) ) )
4336, 42eqtrd 2226 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( `  C ) ) )  ->  ( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `
 n )  =  ( ( k  e.  A  |->  B ) `  ( F `  ( f `
 n ) ) ) )
4419, 20, 21, 29, 43fprodseq 11729 . . . . . . 7  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  prod_ m  e.  C  ( ( k  e.  A  |->  B ) `  ( F `  m )
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  C ) ,  ( ( ( k  e.  A  |->  B )  o.  ( F  o.  f
) ) `  n
) ,  1 ) ) ) `  ( `  C ) ) )
45 eqid 2193 . . . . . . . . . . . . 13  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
46 fprodf1o.1 . . . . . . . . . . . . 13  |-  ( k  =  G  ->  B  =  D )
47 fprodf1o.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  =  G )
4823ffvelcdmda 5694 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  e.  A )
4947, 48eqeltrrd 2271 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  C )  ->  G  e.  A )
5046eleq1d 2262 . . . . . . . . . . . . . 14  |-  ( k  =  G  ->  ( B  e.  CC  <->  D  e.  CC ) )
5125ralrimiva 2567 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
5251adantr 276 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  C )  ->  A. k  e.  A  B  e.  CC )
5350, 52, 49rspcdva 2870 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  C )  ->  D  e.  CC )
5445, 46, 49, 53fvmptd3 5652 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( k  e.  A  |->  B ) `  G
)  =  D )
5547fveq2d 5559 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( k  e.  A  |->  B ) `  ( F `  n )
)  =  ( ( k  e.  A  |->  B ) `  G ) )
56 simpr 110 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  C )  ->  n  e.  C )
57 eqid 2193 . . . . . . . . . . . . . 14  |-  ( n  e.  C  |->  D )  =  ( n  e.  C  |->  D )
5857fvmpt2 5642 . . . . . . . . . . . . 13  |-  ( ( n  e.  C  /\  D  e.  CC )  ->  ( ( n  e.  C  |->  D ) `  n )  =  D )
5956, 53, 58syl2anc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( n  e.  C  |->  D ) `  n
)  =  D )
6054, 55, 593eqtr4rd 2237 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  C )  ->  (
( n  e.  C  |->  D ) `  n
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 n ) ) )
6160ralrimiva 2567 . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  C  ( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
) )
62 nffvmpt1 5566 . . . . . . . . . . . 12  |-  F/_ n
( ( n  e.  C  |->  D ) `  m )
6362nfeq1 2346 . . . . . . . . . . 11  |-  F/ n
( ( n  e.  C  |->  D ) `  m )  =  ( ( k  e.  A  |->  B ) `  ( F `  m )
)
64 fveq2 5555 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( n  e.  C  |->  D ) `  n
)  =  ( ( n  e.  C  |->  D ) `  m ) )
65 2fveq3 5560 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( k  e.  A  |->  B ) `  ( F `  n )
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 m ) ) )
6664, 65eqeq12d 2208 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
)  <->  ( ( n  e.  C  |->  D ) `
 m )  =  ( ( k  e.  A  |->  B ) `  ( F `  m ) ) ) )
6763, 66rspc 2859 . . . . . . . . . 10  |-  ( m  e.  C  ->  ( A. n  e.  C  ( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
)  ->  ( (
n  e.  C  |->  D ) `  m )  =  ( ( k  e.  A  |->  B ) `
 ( F `  m ) ) ) )
6861, 67mpan9 281 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  C )  ->  (
( n  e.  C  |->  D ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 m ) ) )
6968adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  m  e.  C )  ->  (
( n  e.  C  |->  D ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 m ) ) )
7069prodeq2dv 11712 . . . . . . 7  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  prod_ m  e.  C  ( ( n  e.  C  |->  D ) `  m
)  =  prod_ m  e.  C  ( (
k  e.  A  |->  B ) `  ( F `
 m ) ) )
71 fveq2 5555 . . . . . . . 8  |-  ( m  =  ( ( F  o.  f ) `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( ( F  o.  f ) `
 n ) ) )
7226adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
( k  e.  A  |->  B ) : A --> CC )
7372ffvelcdmda 5694 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  m  e.  A )  ->  (
( k  e.  A  |->  B ) `  m
)  e.  CC )
7471, 20, 32, 73, 36fprodseq 11729 . . . . . . 7  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  C ) ,  ( ( ( k  e.  A  |->  B )  o.  ( F  o.  f
) ) `  n
) ,  1 ) ) ) `  ( `  C ) ) )
7544, 70, 743eqtr4rd 2237 . . . . . 6  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  =  prod_ m  e.  C  ( (
n  e.  C  |->  D ) `  m ) )
7651adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  A. k  e.  A  B  e.  CC )
77 prodfct 11733 . . . . . . 7  |-  ( A. k  e.  A  B  e.  CC  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `
 m )  = 
prod_ k  e.  A  B )
7876, 77syl 14 . . . . . 6  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  =  prod_ k  e.  A  B )
7953ralrimiva 2567 . . . . . . . 8  |-  ( ph  ->  A. n  e.  C  D  e.  CC )
8079adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  A. n  e.  C  D  e.  CC )
81 prodfct 11733 . . . . . . 7  |-  ( A. n  e.  C  D  e.  CC  ->  prod_ m  e.  C  ( ( n  e.  C  |->  D ) `
 m )  = 
prod_ n  e.  C  D )
8280, 81syl 14 . . . . . 6  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  prod_ m  e.  C  ( ( n  e.  C  |->  D ) `  m
)  =  prod_ n  e.  C  D )
8375, 78, 823eqtr3d 2234 . . . . 5  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D )
8483expr 375 . . . 4  |-  ( (
ph  /\  ( `  C
)  e.  NN )  ->  ( f : ( 1 ... ( `  C ) ) -1-1-onto-> C  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D ) )
8584exlimdv 1830 . . 3  |-  ( (
ph  /\  ( `  C
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( `  C
) ) -1-1-onto-> C  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D ) )
8685expimpd 363 . 2  |-  ( ph  ->  ( ( ( `  C
)  e.  NN  /\  E. f  f : ( 1 ... ( `  C
) ) -1-1-onto-> C )  ->  prod_ k  e.  A  B  = 
prod_ n  e.  C  D ) )
87 fprodf1o.2 . . 3  |-  ( ph  ->  C  e.  Fin )
88 fz1f1o 11521 . . 3  |-  ( C  e.  Fin  ->  ( C  =  (/)  \/  (
( `  C )  e.  NN  /\  E. f 
f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) ) )
8987, 88syl 14 . 2  |-  ( ph  ->  ( C  =  (/)  \/  ( ( `  C
)  e.  NN  /\  E. f  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) ) )
9018, 86, 89mpjaod 719 1  |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   (/)c0 3447   ifcif 3558   class class class wbr 4030    |-> cmpt 4091    o. ccom 4664   -->wf 5251   -onto->wfo 5253   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919   Fincfn 6796   CCcc 7872   1c1 7875    x. cmul 7879    <_ cle 8057   NNcn 8984   ...cfz 10077    seqcseq 10521  ♯chash 10849   prod_cprod 11696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-proddc 11697
This theorem is referenced by:  fprodssdc  11736  fprodshft  11764  fprodrev  11765  fprod2dlemstep  11768  fprodcnv  11771  eulerthlemth  12373  gausslemma2dlem1  15218
  Copyright terms: Public domain W3C validator