ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodf1o Unicode version

Theorem fprodf1o 11974
Description: Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017.)
Hypotheses
Ref Expression
fprodf1o.1  |-  ( k  =  G  ->  B  =  D )
fprodf1o.2  |-  ( ph  ->  C  e.  Fin )
fprodf1o.3  |-  ( ph  ->  F : C -1-1-onto-> A )
fprodf1o.4  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  =  G )
fprodf1o.5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fprodf1o  |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D )
Distinct variable groups:    A, k, n    B, n    C, n    D, k    n, F    k, G    ph, k, n
Allowed substitution hints:    B( k)    C( k)    D( n)    F( k)    G( n)

Proof of Theorem fprodf1o
Dummy variables  f  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prod0 11971 . . . 4  |-  prod_ k  e.  (/)  B  =  1
2 fprodf1o.3 . . . . . . . . 9  |-  ( ph  ->  F : C -1-1-onto-> A )
32adantr 276 . . . . . . . 8  |-  ( (
ph  /\  C  =  (/) )  ->  F : C
-1-1-onto-> A )
4 f1oeq2 5523 . . . . . . . . 9  |-  ( C  =  (/)  ->  ( F : C -1-1-onto-> A  <->  F : (/) -1-1-onto-> A ) )
54adantl 277 . . . . . . . 8  |-  ( (
ph  /\  C  =  (/) )  ->  ( F : C -1-1-onto-> A  <->  F : (/) -1-1-onto-> A ) )
63, 5mpbid 147 . . . . . . 7  |-  ( (
ph  /\  C  =  (/) )  ->  F : (/) -1-1-onto-> A )
7 f1ofo 5541 . . . . . . 7  |-  ( F : (/)
-1-1-onto-> A  ->  F : (/) -onto-> A )
86, 7syl 14 . . . . . 6  |-  ( (
ph  /\  C  =  (/) )  ->  F : (/)
-onto-> A )
9 fo00 5571 . . . . . . 7  |-  ( F : (/) -onto-> A  <->  ( F  =  (/)  /\  A  =  (/) ) )
109simprbi 275 . . . . . 6  |-  ( F : (/) -onto-> A  ->  A  =  (/) )
118, 10syl 14 . . . . 5  |-  ( (
ph  /\  C  =  (/) )  ->  A  =  (/) )
1211prodeq1d 11950 . . . 4  |-  ( (
ph  /\  C  =  (/) )  ->  prod_ k  e.  A  B  =  prod_ k  e.  (/)  B )
13 prodeq1 11939 . . . . . 6  |-  ( C  =  (/)  ->  prod_ n  e.  C  D  =  prod_ n  e.  (/)  D )
14 prod0 11971 . . . . . 6  |-  prod_ n  e.  (/)  D  =  1
1513, 14eqtrdi 2255 . . . . 5  |-  ( C  =  (/)  ->  prod_ n  e.  C  D  = 
1 )
1615adantl 277 . . . 4  |-  ( (
ph  /\  C  =  (/) )  ->  prod_ n  e.  C  D  =  1 )
171, 12, 163eqtr4a 2265 . . 3  |-  ( (
ph  /\  C  =  (/) )  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D )
1817ex 115 . 2  |-  ( ph  ->  ( C  =  (/)  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D ) )
19 2fveq3 5594 . . . . . . . 8  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  ( F `  m )
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 ( f `  n ) ) ) )
20 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
( `  C )  e.  NN )
21 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
f : ( 1 ... ( `  C
) ) -1-1-onto-> C )
22 f1of 5534 . . . . . . . . . . . 12  |-  ( F : C -1-1-onto-> A  ->  F : C
--> A )
232, 22syl 14 . . . . . . . . . . 11  |-  ( ph  ->  F : C --> A )
2423ffvelcdmda 5728 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  C )  ->  ( F `  m )  e.  A )
25 fprodf1o.5 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2625fmpttd 5748 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
2726ffvelcdmda 5728 . . . . . . . . . 10  |-  ( (
ph  /\  ( F `  m )  e.  A
)  ->  ( (
k  e.  A  |->  B ) `  ( F `
 m ) )  e.  CC )
2824, 27syldan 282 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  C )  ->  (
( k  e.  A  |->  B ) `  ( F `  m )
)  e.  CC )
2928adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  m  e.  C )  ->  (
( k  e.  A  |->  B ) `  ( F `  m )
)  e.  CC )
30 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C )  ->  f : ( 1 ... ( `  C
) ) -1-1-onto-> C )
31 f1oco 5557 . . . . . . . . . . . 12  |-  ( ( F : C -1-1-onto-> A  /\  f : ( 1 ... ( `  C )
)
-1-1-onto-> C )  ->  ( F  o.  f ) : ( 1 ... ( `  C )
)
-1-1-onto-> A )
322, 30, 31syl2an 289 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
( F  o.  f
) : ( 1 ... ( `  C
) ) -1-1-onto-> A )
33 f1of 5534 . . . . . . . . . . 11  |-  ( ( F  o.  f ) : ( 1 ... ( `  C )
)
-1-1-onto-> A  ->  ( F  o.  f ) : ( 1 ... ( `  C
) ) --> A )
3432, 33syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
( F  o.  f
) : ( 1 ... ( `  C
) ) --> A )
35 fvco3 5663 . . . . . . . . . 10  |-  ( ( ( F  o.  f
) : ( 1 ... ( `  C
) ) --> A  /\  n  e.  ( 1 ... ( `  C
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
( F  o.  f
) `  n )
) )
3634, 35sylan 283 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( `  C ) ) )  ->  ( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `
 n )  =  ( ( k  e.  A  |->  B ) `  ( ( F  o.  f ) `  n
) ) )
37 f1of 5534 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( `  C )
)
-1-1-onto-> C  ->  f : ( 1 ... ( `  C
) ) --> C )
3837adantl 277 . . . . . . . . . . . 12  |-  ( ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C )  ->  f : ( 1 ... ( `  C
) ) --> C )
3938adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
f : ( 1 ... ( `  C
) ) --> C )
40 fvco3 5663 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( `  C
) ) --> C  /\  n  e.  ( 1 ... ( `  C
) ) )  -> 
( ( F  o.  f ) `  n
)  =  ( F `
 ( f `  n ) ) )
4139, 40sylan 283 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( `  C ) ) )  ->  ( ( F  o.  f ) `  n )  =  ( F `  ( f `
 n ) ) )
4241fveq2d 5593 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( `  C ) ) )  ->  ( ( k  e.  A  |->  B ) `
 ( ( F  o.  f ) `  n ) )  =  ( ( k  e.  A  |->  B ) `  ( F `  ( f `
 n ) ) ) )
4336, 42eqtrd 2239 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( `  C ) ) )  ->  ( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `
 n )  =  ( ( k  e.  A  |->  B ) `  ( F `  ( f `
 n ) ) ) )
4419, 20, 21, 29, 43fprodseq 11969 . . . . . . 7  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  prod_ m  e.  C  ( ( k  e.  A  |->  B ) `  ( F `  m )
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  C ) ,  ( ( ( k  e.  A  |->  B )  o.  ( F  o.  f
) ) `  n
) ,  1 ) ) ) `  ( `  C ) ) )
45 eqid 2206 . . . . . . . . . . . . 13  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
46 fprodf1o.1 . . . . . . . . . . . . 13  |-  ( k  =  G  ->  B  =  D )
47 fprodf1o.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  =  G )
4823ffvelcdmda 5728 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  e.  A )
4947, 48eqeltrrd 2284 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  C )  ->  G  e.  A )
5046eleq1d 2275 . . . . . . . . . . . . . 14  |-  ( k  =  G  ->  ( B  e.  CC  <->  D  e.  CC ) )
5125ralrimiva 2580 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
5251adantr 276 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  C )  ->  A. k  e.  A  B  e.  CC )
5350, 52, 49rspcdva 2886 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  C )  ->  D  e.  CC )
5445, 46, 49, 53fvmptd3 5686 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( k  e.  A  |->  B ) `  G
)  =  D )
5547fveq2d 5593 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( k  e.  A  |->  B ) `  ( F `  n )
)  =  ( ( k  e.  A  |->  B ) `  G ) )
56 simpr 110 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  C )  ->  n  e.  C )
57 eqid 2206 . . . . . . . . . . . . . 14  |-  ( n  e.  C  |->  D )  =  ( n  e.  C  |->  D )
5857fvmpt2 5676 . . . . . . . . . . . . 13  |-  ( ( n  e.  C  /\  D  e.  CC )  ->  ( ( n  e.  C  |->  D ) `  n )  =  D )
5956, 53, 58syl2anc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( n  e.  C  |->  D ) `  n
)  =  D )
6054, 55, 593eqtr4rd 2250 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  C )  ->  (
( n  e.  C  |->  D ) `  n
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 n ) ) )
6160ralrimiva 2580 . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  C  ( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
) )
62 nffvmpt1 5600 . . . . . . . . . . . 12  |-  F/_ n
( ( n  e.  C  |->  D ) `  m )
6362nfeq1 2359 . . . . . . . . . . 11  |-  F/ n
( ( n  e.  C  |->  D ) `  m )  =  ( ( k  e.  A  |->  B ) `  ( F `  m )
)
64 fveq2 5589 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( n  e.  C  |->  D ) `  n
)  =  ( ( n  e.  C  |->  D ) `  m ) )
65 2fveq3 5594 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( k  e.  A  |->  B ) `  ( F `  n )
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 m ) ) )
6664, 65eqeq12d 2221 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
)  <->  ( ( n  e.  C  |->  D ) `
 m )  =  ( ( k  e.  A  |->  B ) `  ( F `  m ) ) ) )
6763, 66rspc 2875 . . . . . . . . . 10  |-  ( m  e.  C  ->  ( A. n  e.  C  ( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
)  ->  ( (
n  e.  C  |->  D ) `  m )  =  ( ( k  e.  A  |->  B ) `
 ( F `  m ) ) ) )
6861, 67mpan9 281 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  C )  ->  (
( n  e.  C  |->  D ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 m ) ) )
6968adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  m  e.  C )  ->  (
( n  e.  C  |->  D ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 m ) ) )
7069prodeq2dv 11952 . . . . . . 7  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  prod_ m  e.  C  ( ( n  e.  C  |->  D ) `  m
)  =  prod_ m  e.  C  ( (
k  e.  A  |->  B ) `  ( F `
 m ) ) )
71 fveq2 5589 . . . . . . . 8  |-  ( m  =  ( ( F  o.  f ) `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( ( F  o.  f ) `
 n ) ) )
7226adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  -> 
( k  e.  A  |->  B ) : A --> CC )
7372ffvelcdmda 5728 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  C )  e.  NN  /\  f : ( 1 ... ( `  C ) ) -1-1-onto-> C ) )  /\  m  e.  A )  ->  (
( k  e.  A  |->  B ) `  m
)  e.  CC )
7471, 20, 32, 73, 36fprodseq 11969 . . . . . . 7  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  C ) ,  ( ( ( k  e.  A  |->  B )  o.  ( F  o.  f
) ) `  n
) ,  1 ) ) ) `  ( `  C ) ) )
7544, 70, 743eqtr4rd 2250 . . . . . 6  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  =  prod_ m  e.  C  ( (
n  e.  C  |->  D ) `  m ) )
7651adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  A. k  e.  A  B  e.  CC )
77 prodfct 11973 . . . . . . 7  |-  ( A. k  e.  A  B  e.  CC  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `
 m )  = 
prod_ k  e.  A  B )
7876, 77syl 14 . . . . . 6  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  =  prod_ k  e.  A  B )
7953ralrimiva 2580 . . . . . . . 8  |-  ( ph  ->  A. n  e.  C  D  e.  CC )
8079adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  A. n  e.  C  D  e.  CC )
81 prodfct 11973 . . . . . . 7  |-  ( A. n  e.  C  D  e.  CC  ->  prod_ m  e.  C  ( ( n  e.  C  |->  D ) `
 m )  = 
prod_ n  e.  C  D )
8280, 81syl 14 . . . . . 6  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  prod_ m  e.  C  ( ( n  e.  C  |->  D ) `  m
)  =  prod_ n  e.  C  D )
8375, 78, 823eqtr3d 2247 . . . . 5  |-  ( (
ph  /\  ( ( `  C )  e.  NN  /\  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) )  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D )
8483expr 375 . . . 4  |-  ( (
ph  /\  ( `  C
)  e.  NN )  ->  ( f : ( 1 ... ( `  C ) ) -1-1-onto-> C  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D ) )
8584exlimdv 1843 . . 3  |-  ( (
ph  /\  ( `  C
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( `  C
) ) -1-1-onto-> C  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D ) )
8685expimpd 363 . 2  |-  ( ph  ->  ( ( ( `  C
)  e.  NN  /\  E. f  f : ( 1 ... ( `  C
) ) -1-1-onto-> C )  ->  prod_ k  e.  A  B  = 
prod_ n  e.  C  D ) )
87 fprodf1o.2 . . 3  |-  ( ph  ->  C  e.  Fin )
88 fz1f1o 11761 . . 3  |-  ( C  e.  Fin  ->  ( C  =  (/)  \/  (
( `  C )  e.  NN  /\  E. f 
f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) ) )
8987, 88syl 14 . 2  |-  ( ph  ->  ( C  =  (/)  \/  ( ( `  C
)  e.  NN  /\  E. f  f : ( 1 ... ( `  C
) ) -1-1-onto-> C ) ) )
9018, 86, 89mpjaod 720 1  |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2177   A.wral 2485   (/)c0 3464   ifcif 3575   class class class wbr 4051    |-> cmpt 4113    o. ccom 4687   -->wf 5276   -onto->wfo 5278   -1-1-onto->wf1o 5279   ` cfv 5280  (class class class)co 5957   Fincfn 6840   CCcc 7943   1c1 7946    x. cmul 7950    <_ cle 8128   NNcn 9056   ...cfz 10150    seqcseq 10614  ♯chash 10942   prod_cprod 11936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-oadd 6519  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706  df-ihash 10943  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-proddc 11937
This theorem is referenced by:  fprodssdc  11976  fprodshft  12004  fprodrev  12005  fprod2dlemstep  12008  fprodcnv  12011  eulerthlemth  12629  gausslemma2dlem1  15613
  Copyright terms: Public domain W3C validator